
Linking Individual Differences in Personalized Functional Network 
Topography to Psychopathology in Youth 

 
Zaixu Cui1,2,3*, Adam R. Pines1,2, Bart Larsen1,2, Valerie J. Sydnor1,2, Hongming Li4,5, Azeez Adebimpe1,2, 

Aaron F. Alexander-Bloch2,6, Dani S. Bassett2,7,8,9,10,11, Max Bertolero1,2, Monica E. Calkins2, Christos 
Davatzikos4,5,7,9, Damien A. Fair12, Ruben C. Gur2,4,5,8, Raquel E. Gur2,4,5,8, Tyler M. Moore2, Sheila 

Shanmugan1,2, Russell T. Shinohara5,13, Jacob W. Vogel1,2, Cedric H. Xia1,2,Yong Fan4,5,  
and Theodore D. Satterthwaite1,2,5,13* 

 
1Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 
19104, USA 

2Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA 
3Chinese Institute for Brain Research, Beijing 102206, China 
4Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA 
5Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 
19104, USA 
6Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of 
Philadelphia, Philadelphia, PA 19104, USA 
7Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA 
8Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA 
9Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, 
USA 
10Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 
11Santa Fe Institute, Santa Fe, NM 87501, USA 
12Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and 
Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, 
MN 55414, USA 
13Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and 
Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA 
 
*Corresponding author. Email: cuizaixu@cibr.ac.cn (Z.C.); sattertt@pennmedicine.upenn.edu (T.D.S.) 
 
 
 
  



ABSTRACT 
 
The spatial layout of large-scale functional brain networks differs between individuals and is 

particularly variable in association cortex that has been implicated in a broad range of psychiatric 

disorders. However, it remains unknown whether this variation in functional topography is related 

to major dimensions of psychopathology in youth. Capitalizing on a large sample with 27-minutes 

of high-quality functional MRI data (n=790, ages 8-23 years) and advances in machine learning, 

we examined associations between functional topography and four correlated dimensions of 

psychopathology (fear, psychosis, externalizing, anxious-misery) as well as an overall 

psychopathology factor. We found that functional topography significantly predicted individual 

differences in dimensions of psychopathology, driven mainly by robust associations between 

topography and overall psychopathology. Reduced cortical representations of association 

networks were among the most important features of the model. Our results emphasize the value 

of considering systematic differences in functional neuroanatomy for personalized diagnostics and 

therapeutics in psychiatry.  

 

 
 
 
  



INTRODUCTION 
 

The human cerebral cortex is organized into spatially distributed large-scale functional 

networks that support diverse perceptual, executive, and socioemotional functions (Power et al., 

2011; Yeo et al., 2011). Recent evidence from multiple independent studies has demonstrated that 

the spatial layout of these functional networks—their “functional topography”—varies 

substantially across individuals, even after accurate alignment to a common structural template 

(Bijsterbosch et al., 2018; Braga and Buckner, 2017; Glasser et al., 2016; Gordon et al., 2017a; 

Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 2019; Laumann et al., 2015; Li et al., 2019; 

Wang et al., 2015). Importantly, inter-individual variability in functional topography is not 

uniform across the cortex. Greater variability of functional topography is present in association 

cortex—higher-order, phylogenetically-expanded areas of cortex that support integrative, abstract, 

and advanced mental functions (Cui et al., 2020; Gordon et al., 2017b; Gordon et al., 2017c; Kong 

et al., 2019; Li et al., 2019; Wang et al., 2015). The functional topography of the association cortex 

is refined during development and has been previously associated with individual differences in 

executive function in youth (Cui et al., 2020). Critically, abnormal development of association 

cortices has been hypothesized to underlie the emergence of diverse psychiatric disorders during 

childhood, adolescence, and young adulthood (Menon, 2011; Sha et al., 2019; Sydnor et al., 2021). 

However, it remains unknown if individual differences in the functional topography of association 

cortex are linked to symptoms of psychiatric illness in youth.  

While psychiatric illness is typically described according to the Diagnostic and Statistical 

Manual (DSM) (Edition, 2013), categorical clinical diagnoses fail to capture variability in disease 

severity, suffer from notable heterogeneity within diagnoses, and are marked by a high degree of 

co-morbidity (Clark et al., 2017; Drysdale et al., 2017; Kaczkurkin et al., 2020; Kotov et al., 2017; 



Lynch et al., 2020; Satterthwaite et al., 2020). Accordingly, efforts such as the National Institute 

of Mental Health (NIMH) Research Domain Criteria (RDoC) initiative and the Hierarchical 

Taxonomy of Psychopathology (HiTOP) frameworks have proposed dimensional models of 

psychopathology (Conway et al., 2019; Insel et al., 2010; Insel, 2014; Kotov et al., 2017; Krueger 

et al., 2018; Lahey et al., 2021). Dimensional taxonomies describe psychopathology as 

hierarchically organized, correlated dimensions of symptoms, wherein an individual receives a 

continuous score on each dimension (Kotov et al., 2017; Lahey et al., 2021). Previous studies 

conducted in youth samples have identified four major dimensions of psychopathology; these 

include fear, psychosis, externalizing and anxious-misery dimensions (Kaczkurkin et al., 2019; 

Kotov et al., 2017).  

Emerging evidence additionally points to the importance of characterizing clinical and 

neural correlates of a dimensional overall psychopathology factor (also called the “p-factor”). The  

p-factor quantifies an individual’s shared vulnerability to a broad range of trans-diagnostic 

psychiatric symptoms and thus accounts for comorbidity among psychiatric disorders (Caspi et al., 

2014; Caspi and Moffitt, 2018; Lahey et al., 2012; Lahey et al., 2017). Higher overall 

psychopathology scores, above and beyond specific psychopathology dimensions, are linked to 

earlier onset of psychiatric disorders and greater life impairment (Caspi et al., 2014). Moreover, 

using structural MRI, Romer and colleagues demonstrated that reduced cortical thickness 

commonly reported in association with specific psychiatric diagnoses may in fact represent a 

transdiagnostic feature associated with overall psychopathology severity (Romer et al., 2021). 

Notably, that study showed that reductions in thickness linked to psychopathology were largest in 

transmodal association cortices that sit at the top of a sensorimotor-association functional 

hierarchy (Romer et al., 2021). Similarly, using functional MRI, trans-diagnostic studies have 



reported dysfunction of association networks across diagnoses (Sha et al., 2019), which may reflect 

neurobiological correlates of pervasive comorbid psychopathology. Supporting this notion, the 

burden of overall psychopathology has been linked to abnormal patterns of functional connectivity 

between large-scale cortical networks (Elliott et al., 2018; Karcher et al., 2020; Kaufmann et al., 

2017; Kebets et al., 2019). Nonetheless, it remains unknown whether individual differences in 

functional topography are related to major dimensions of psychopathology in youth, or whether 

abnormalities of association cortex topography are linked to overall psychopathology across 

disorders. 

Here, we sought to understand how individual differences in functional network 

topography are associated with major dimensions of psychopathology in children, adolescents, and 

young adults. To do this, we capitalized on advances in machine learning and a large sample of 

youths who underwent clinical phenotyping and functional neuroimaging as part of the 

Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014). We hypothesized that 

major dimensions of psychopathology would be linked to individual differences in functional 

topography. Furthermore, we expected that associations with major dimensions of 

psychopathology would be largely driven by shared deficits in association cortex linked to trans-

diagnostic overall psychopathology.  

 
RESULTS 
 

We studied 790 youths aged 8 to 23 years who underwent imaging as part of the PNC and 

had high-quality fMRI data of more than 27 minutes. As in our previous work (Cui et al., 2020), 

we used spatially regularized non-negative matrix factorization (NMF; Lee and Seung (1999)) to 

delineate 17 individual-specific (“personalized”) large-scale functional networks (Li et al., 2017) 

(Figure S2). NMF yields a probabilistic (soft) parcellation that can be converted into a discrete 



(hard) parcellation by labeling each vertex according to its highest loading (Figure 1). As 

previously (Cui et al., 2020), we named each personalized network according to its overlap with 

the canonical 17-network solution defined by Yeo et al. (Yeo et al., 2011). The spatial layout of 

these networks was largely similar to our prior work (Cui et al., 2020), with only subtle distinctions 

observed in the present sample, which includes persons with more servere psychopathology who 

were excluded from the previous study. As expected, across-subject variability of personalized 

functional network topography was highest in the association cortex (Figure S3A and S3B).    

 

 



 

Figure 1. Group atlas used to initialize personalized functional networks. A group atlas was 
constructed to ensure correspondence across individuals; this group atlas was tailored to each 
individual to yield personalized networks. The networks in the group atlas include visual networks 
(5, 7, and 15), somatomotor networks (1, 2, 11, and 16), an auditory network (12), a dorsal attention 
network (13), ventral attention networks (4 and 10), fronto-parietal control networks (9, 14, and 
17), and default mode networks (3, 6, and 8). In this atlas, there are 17 loadings for each vertex 
that quantify the extent to which the vertex belongs to each network. For each loading map, 
brighter colors indicate greater loadings. Vertices can be assigned to the network with the highest 
loading, yielding a discrete network parcellation (center).  
 

Functional topography predicts dimensions of psychopathology  



We next related the topography of personalized networks to major dimensions of 

psychopathology. As described previously (Calkins et al., 2015; Calkins et al., 2017; Kaczkurkin 

et al., 2019; Shanmugan et al., 2016), psychopathology symptoms were assessed using a structured 

screening interview (GOASSESS) that included 112 items (see Supplementary Data and Table 

S1). As in prior work (Kaczkurkin et al., 2019), we employed an exploratory factor analysis to 

create four correlated dimensions of psychopathology: fear, psychosis, externalizing, and anxious-

misery (Figure 2). Each participant received a factor score for each of the four dimensions. The 

inter-factor correlations in this correlated-traits model were high (mean r = 0.71; see Figure S4). 

When dimensional scores were summarized by each psychiatric screening diagnosis, substantial 

similarities in the presence of each factor were observed across screening diagnoses (Figure 2). 

 

Figure 2. Correlated dimensions of psychopathology. An exploratory factor analysis of 112 
psychopathology symptoms previously identified four correlated dimensions of psychopathology, 
including fear, psychosis, externalizing and anxious-misery. As expected, dimensional symptom 
profiles are substantially similar across screening diagnostic categories, as revealed by mean factor 
scores obtained for each category. See Table S1 for the number of participants in each category. 
ADHD: attention deficit hyperactivity disorder; MDD: major depressive disorder; OCD: 
obsessive-compulsive disorder; ODD: oppositional defiant disorder; PS: psychosis spectrum; 



PTSD: post-traumatic stress disorder; Sep Anx: separation anxiety; Soc Pho: social phobia; Spec 
Pho: specific phobia; TD: typically developing. PNC: Philadelphia Neurodevelopmental Cohort. 

 

Next, we investigated associations between factor scores and functional topography of 

personalized networks. Previous studies have demonstrated that multivariate analyses using 

machine learning can integrate spatially distributed predictive features in high-dimensional data 

(Haynes, 2015; Kong et al., 2019; Norman et al., 2006). Accordingly, we used a multivariate 

approach to understand the degree to which the overall pattern of functional topography encoded 

each of the four correlated dimensions of psychopathology. Specifically, we combined the loading 

maps of all 17 networks into a feature vector that represented each individual’s unique multivariate 

pattern of functional topography.  

With these data, we used partial least square regression (PLS-R) to predict an individual’s 

score in each dimension of psychopathology from their functional topography. PLS-R seeks to 

find orthogonal latent components to predict an unseen outcome as accurately as possible; this 

approach is particularly suitable for high-dimensional data like functional topography. We used 

nested 2-fold cross-validation (2F-CV), with an outer loop evaluating the generalization of the 

model to unseen individuals, while the inner-loop selected optimal parameters (Figure S5). We 

evaluated each prediction by the correlation (r) between the actual and predicted scores, as well as 

by the mean absolute error (MAE). As the split into two halves was random, we repeated the above 

2F-CV procedure 101 times and summarized the prediction accuracy using the median of the 

distribution. We used 101 repetitions rather than 100 to facilitate the selection of a median value. 

The significance of the prediction was evaluated using permutation testing, and Bonferroni 

correction was applied to account for multiple predictions (i.e., four dimensions). Throughout, we 

controlled for covariates including age, sex, and in-scanner motion.  



This multivariate analysis revealed that the complex pattern of network topography could 

significantly predict unseen individuals’ dimensional scores of psychopathology. Specifically, we 

found that functional topography could predict symptoms of fear (r = 0.20, PBonf < 0.001, MAE = 

0.86, Figure 3A), psychosis (r = 0.16, PBonf < 0.001, MAE = 0.89, Figure 3B), externalizing (r = 

0.14, PBonf < 0.001, MAE = 0.84, Figure 3C), and anxious-misery (r = 0.11, PBonf = 0.008, MAE = 

0.89 Figure 3D). These Bonferroni-corrected permutation tests indicate that the correlation 

between the actual and the PLS-R predicted scores was significantly higher than expected by 

chance for each of the four dimensions (Figure 3E).  

 



Figure 3. Functional topography predicts individual differences in major dimensions of 
psychopathology. Functional topography predicts unseen individuals’ dimensions of 
psychopathology, including fear (A), psychosis (B), externalizing (C) and anxious-misery (D). 
The data points represent the predicted scores (y-axis) of participants in a model trained on 
independent data using two-fold cross-validation (2F-CV). The 2F-CV was implemented by 
splitting all participants into two subsets. In each panel, the dark and light color represents 
participants of the two subsets, respectively. P values derived from permutation testing with 
Bonferroni correction indicated that the actual prediction accuracy (i.e., mean correlation r 
between two folds) was significantly higher than that expected by chance for all the four 
dimensions. Panel (E) shows the distribution of prediction accuracy values (i.e., correlation r) from 
permutation testing (small dots and histogram/boxplot) and the actual prediction accuracy (large 
dot).  
 
 
Major dimensions of psychopathology are predicted by similar patterns of functional 

topography 

 To understand the underlying patterns of network topography that contributed to our 

multivariate models, we evaluated the contribution weights of model features. In each multivariate 

model, every vertex received a feature weight for each network (i.e., 17 values per vertex). The 

absolute value of the weight quantifies the importance of the feature in the predictive model, while 

the sign indicates a negative or positive association between network loading and the dimensional 

psychopathology factor scores. Across the 101 split-half runs, we evaluated the median weight for 

each feature to summarize the contribution weight. Finally, to derive a network-level summary 

measure, we summed all feature weights within each network; this measure provides an 

interpretable summary of high-dimensional feature weights. A positive network-level summary 

value would indicate that a network has greater representation in individuals with more symptoms. 

In contrast, a negative network-level summary value would indicate that a network has a reduced 

representation in individuals with more symptoms. 

This procedure revealed that deficits in association networks drove the prediction of each 

dimension of psychopathology, suggesting that there is reduced cortical representation of higher-



order functional networks in youth with more severe psychiatric symptoms (Figure 4). For 

example, feature weights in fronto-parietal networks (networks 9 and 17) were negative in models 

of each of the four correlated dimensions of psychopathology (Figure 4A-D). Additionally, 

deficits in the ventral attention network (network 4) were prominent in psychosis (Figure 4B) and 

anxious-misery symptoms (Figure 4D), while deficits in the dorsal attention network (network 13) 

were notable for externalizing symptoms (Figure 4C). In contrast to findings in association cortex, 

positive feature weights were observed for lower-order somatomotor and visual networks, 

indicating a greater relative cortical representation of these networks in those with higher 

psychopathology symptoms. Together, these results suggest that deficits in the functional 

topography of association networks are linked to four correlated dimensions of psychopathology 

in youth.  

While the above analysis summarized the contribution of features by network, we next 

sought to understand the location of important model features on the cortex. Accordingly, we 

examined the overall contribution of cortical locations in the multivariate model by summing the 

absolute weights of each vertex across all 17 networks. We observed that vertices in prefrontal, 

parietal, and temporo-occipital cortices contributed most to predicting the burden of 

psychopathology. This pattern was notably consistent across all four dimensions, including fear 

(Figure 4E), psychosis (Figure 4F), externalizing (Figure 4G), and anxious-misery (Figure 4H). 

To quantify the extent of similarity, we calculated the correlation of contribution patterns between 

each pair of dimensions, and assessed significance using a conservative spin-based spatial 

permutation procedure. This analysis revealed that the loading maps were similar across all 

dimensions (all pairwise Pspin < 0.001, mean pairwise r = 0.78; see Figure S6). 

 



 

Figure 4. The four major dimensions of psychopathology are predicted by similar patterns 
of functional topography. Summing the model weights of all vertices within each network 
revealed that reduced cortical representation in association networks drove the prediction of fear 
(A), psychosis (B), externalizing (C) and anxious-misery (D) symptoms. At each location on the 
cortex, the absolute weight of each network was summed, revealing that the prefrontal, parietal, 
and occipital-temporal cortices contributed the most to the multivariate model in the prediction of 
fear (E), psychosis (F), externalizing (G) and anxious-misery (H) dimensions. FP: fronto-parietal; 
VA: ventral attention; DA: dorsal attention; DM: default mode; AU: auditory; SM: somatomotor; 
VS: visual.  
 



Overall psychopathology underlies the similar functional topography pattern that predicts 

dimensions of psychopathology 

The above analyses established that functional topography predicted the four correlated 

dimensions of psychopathology, and that the spatial distribution of predictive network patterns 

driving these effects were similar. These results prompted the hypothesis that these shared 

associations might be driven by a general psychopathology factor that captures symptoms integral 

to all four dimensions of psychopathology. To test this hypothesis, we used a previously-reported 

confirmatory bifactor analysis to parse the 112 item-level psychopathology symptoms into 

orthogonal dimensions of psychopathology (Kaczkurkin et al., 2019; Moore et al., 2019; 

Shanmugan et al., 2016). This model included five orthogonal dimensions of psychopathology, 

including overall psychopathology, fear, psychosis, externalizing, and anxious-misery (Figure 

5A). Here, the overall psychopathology factor (also called the “p-factor”) describes a shared 

vulnerability to a broad range of symptoms across mental disorders (Caspi et al., 2014). Averaging 

factor scores by the screening diagnostic category revealed that overall psychopathology was high 

across all disorders. Further, after parsing out the effects of overall psychopathology, each disorder 

became more distinct in terms of the presence and severity of fear, psychosis, externalizing, and 

anxious-misery symptoms (Figure 5B).  

  



 

 

Figure 5. Common and divergent dimensions of psychopathology revealed by a bifactor 
model of psychopathology. (A) A confirmatory bifactor analysis was conducted on the 112 
psychopathology items of the clinical screening interview to extract the orthogonal dimensions of 
psychopathology. These included four specific dimensions (i.e., fear, psychosis, externalizing and 
anxious-misery) and one common dimension (i.e., overall psychopathology). (B) The mean factor 
scores of the diagnostical categories illustrate that each specific psychopathology dimension loads 
more onto the relevant diagnostic categories, while the overall psychopathology factor loads onto 
all the diagnostic categories. ADHD: attention deficit hyperactivity disorder; MDD: major 
depressive disorder; OCD: obsessive-compulsive disorder; ODD: oppositional defiant disorder; 
PS: psychosis spectrum; PTSD: post-traumatic stress disorder; Sep Anx: separation anxiety; Soc 
Pho: Social Phobia; Spec Pho: Specific Phobia; TD: Typically developing.  
 
 



 To test whether the overall psychopathology factor drove the association between 

functional topography and correlated dimensions of psychopathology, we evaluated the degree to 

which the multivariate pattern of functional network topography could be used to predict unseen 

individuals’ scores of the overall psychopathology factor, using the same PLS-R prediction and 

permutation testing procedures as described above (e.g., Figure S5). We found that the 

multivariate pattern of functional topography significantly predicted overall psychopathology in 

unseen participants (r = 0.16, P < 0.001, MAE = 0.87;  see Figure 6A and 6B). We next evaluated 

the features driving this model by network and by location on the cortex. We found that deficits 

(i.e. reduced cortical representation) of multiple association networks—including ventral attention 

(network 4), fronto-parietal (network 17), and dorsal attention (network 13) networks—drove the 

prediction of overall psychopathology (Figure 6C). In contrast, the overall contribution weights 

were positive in somatomotor (networks 2 and 16) and visual (network 5) networks (Figure 6C). 

To further examine these features, we evaluated the features with the highest (top 25%) absolute 

contribution weights (Figure S7). We observed that vertices in the ventral attention network 

(network 4; Figure 6D) and fronto-parietal network (e.g., network 17; Figure 6E) were 

predominantly assigned negative weights.  

Next, as previously, we summed the 17 absolute contribution weights for each vertex 

across networks, and found that the vertices in the prefrontal cortex and temporo-occipital junction 

contributed the most to the prediction of the overall psychopathology factor (Figure 6F). This 

contribution pattern aligned well (mean r = 0.86, all Pspin < 0.001) with the patterns of contribution 

weights in the prediction models of the four correlated dimensions (see Figure 4E-H, above). This 

result suggests that, to a large extent, the association between functional topography and the overall 

psychopathology factor could explain the predictions of the four correlated dimensions of 



psychopathology. Finally, using spatial permutation testing, we evaluated the association between 

a vertex’s contribution to predicting overall psychopathology (Figure 6F) and its position along a 

sensorimotor-to-association cortical hierarchy defined by the principal gradient of functional 

connectivity in an independent dataset (Figure S8). This analysis revealed a significant positive 

correlation (r = 0.23, Pspin = 0.018), indicating that transmodal regions in association cortex had 

higher feature weights in the model (Figure 6G).    

 

Figure 6. The functional topography of association networks predicts individual differences 
in the overall psychopathology factor. (A) Functional topography predicted unseen individuals’ 
overall psychopathology factor scores. Data points represent the predicted scores of the 
participants in a model trained on independent data using 2-fold cross-validation. The P value was 
derived from permutation testing. Panel (B) shows the distribution of prediction accuracies (i.e., 
correlation r) from permutation testing (small dots and histogram/boxplot) and the actual 
prediction accuracy (large red dot). (C) The fronto-parietal, ventral attention, and dorsal attention 



networks contained the highest negative contribution weights, indicative of an inverse relationship 
between the total cortical representation of those networks and overall psychopathology. (D) 
Model weights of features driving prediction mainly represented negative values in network 4, 
including the occipital-temporal junction, insula and inferior frontal areas. The top 25% of vertices 
in terms of feature importance are displayed. (E) The vertices in network 17 also mainly 
represented negative contribution weights in prefrontal areas and the occipital-temporal junction. 
(F) Vertices located at prefrontal, parietal, and occipital-temporal cortices drive the prediction of 
overall psychopathology. (G) The vertices that contributed the most were those sit at the top of 
principal gradient of functional connectivity (Margulies et al., 2016). FP: fronto-parietal; VA: 
ventral attention; DA: dorsal attention; DM: default mode; AU: auditory; SM: somatomotor; VS: 
visual.  
 

Given the robust association identified between functional topography and overall 

psychopathology, we examined whether functional topography could predict other specific sub-

factors of psychopathology from the bifactor model, which describe specific dimensions of 

psychopathology while accounting for overall psychopathology (Figure 5). Accordingly, we again 

used PLS-R and repeated (i.e., 101 times) nested 2F-CV as previously (Figure S5). We found that 

functional topography significantly predicted the fear factor (r = 0.11, PBonf = 0.016, MAE = 0.89, 

Figure S9A and S9B). However, functional topography did not predict other specific dimensions 

from the bifactor model including psychosis (r = 0.08, PBonf = 0.064, MAE = 0.87), anxious-misery 

(r = 0.08, PBonf = 0.108, MAE = 0.87), or externalizing symptoms (r = 0.01, PBonf = 1.000, MAE = 

0.83). Notably, all prediction accuracies declined compared to those of the four correlated 

dimensions (Figure 3), suggesting that the association between functional topography and 

individual symptom dimensions was largely explained by overall psychopathology. Notably, we 

also observed both common and divergent patterns of functional topography explained the 

prediction of the fear factor and the overall psychopathology factor (Supplementary Results, 

Figure S9). 

 

Analysis of granular psychopathology symptoms provides convergent results 



Overall, the above results demonstrated that the overall psychopathology factor dominated 

the association between functional topography and dimensional psychopathology. We next sought 

to further validate this result using an independent methodological approach. Specifically, instead 

of using the overall psychopathology index created by the bifactor model, we sought to find data-

driven links between high-dimensional functional topography data and item-level symptoms of 

psychopathology from the structured screening interview (112 items). Accordingly, we used 

partial least square correlation (PLS-C), which finds pairs of latent components that maximize the 

correlation between two high-dimensional variables. As for our prior analyses, we used 2F-CVs 

to evaluate the generalizability of the correlation between pairs of latent components to unseen 

data. We repeated the 2F-CV procedure 101 times and summarized the out-of-sample correlation 

using the median of the distribution. Our analysis focused on the first pair of latent components, 

which explained the highest covariance (i.e., 5%) between topography and symptoms of 

psychopathology (Figure S10).  

We found that the out-of-sample correlation between the first pair of latent components 

was significantly higher than that expected by chance (r = 0.18, Pperm < 0.001, Figure 7A and 7B), 

suggesting a pattern of association between a weighted set of psychopathology items and a 

weighted set of functional topographic features. As in previous studies (Griffis et al., 2019; 

Karlaftis et al., 2019), we examined the stability of the contribution weight of each 

psychopathology item to the first component. We found that 108 of the 112 psychopathology items 

contributed significantly to the first component (Table S2). Therefore, the first component 

represented a shared vulnerability to a broad range of symptoms, and thus reflected overall 

psychopathology. 

 



Summing the contribution weights within each network, we found a convergent pattern of 

results from this data driven approach. Specifically, the networks with the most negative weights 

were in association cortex, including the fronto-parietal (networks 9 and 17) and ventral attention 

(network 4) networks (Figure 7C). In contrast, the somatomotor (network 2) and visual (network 

5) networks had positive weights (Figure 7C). Summing the absolute contribution weight of each 

vertex across 17 networks indicated that the prefrontal cortex and temporal-occipital cortices 

contributed the most to this data-driven dimension that linked overall psychopathology and 

functional topography (Figure 7D). Using spatial permutation testing, we found this cortical 

spatial distribution of contribution weights was strongly correlated (r = 0.89, Pspin < 0.001, Figure 

7E) with the contribution pattern from the prediction model of the overall psychopathology factor. 

In sum, this data-driven association between functional topography and item-level 

psychopathology symptoms provided convergent evidence that topography was related to overall 

psychopathology factor scores.   

 



Figure 7. Linking the topography with item-level psychopathology symptoms revealed the 
association between functional topography and overall psychopathology factor. (A) The out-
of-sample correlation between the first pair of topography and clinical dimension was r = 0.18 
(P<0.001). Clinical dimension score was a weighted combination of all psychopathology items 
(See Table S2 for weight of each item); while topography dimension score was a weighted 
combination of all network loadings. P value derived from permutation testing indicated that the 
actual out-of-sample correlation was significantly higher than that expected by chance. Panel (B) 
shows the distribution of out-of-sample correlation from permutation testing (small dots and 
histogram/boxplot) and the actual out-of-sample correlation (large red dot). (C) Examining the 
contribution weights of the topography pattern in the first latent component by summing the 
weights of all the vertices within each network revealed that the contribution weights were highly 
negative in the association networks, including fronto-parietal (networks 9 & 17) and ventral 
attention (network 4) networks. (D) At each location on the cortex, the absolute contribution 
weight of each network was summed, revealing that the prefrontal cortex and temporal-occipital 
junction contributed the most to the topography pattern in the first component. (E) This 
contribution pattern was highly correlated with the one (Figure 6F) from multivariate prediction 
model of overall psychopathology factor. FP: fronto-parietal; VA: ventral attention; DA: dorsal 
attention; DM: default mode; AU: auditory; SM: somatomotor; VS: visual.  
 
 
DISCUSSION 
 

We found that the spatial topography of large-scale, individual-specific functional 

networks was associated with individual differences in symptom severity within four major 

dimensions of psychopathology: fear, psychosis, externalizing and anxious-misery dimensions. 

Furthermore, we demonstrated that these associations between symptoms and functional 

topography were mainly driven by an individual’s level of overall psychopathology (commonly 

referred to as the p-factor). Critically, reduced cortical representation in association networks 

contributed the most to the prediction of overall psychopathology. Taken together, these findings 

suggest that individual differences in the spatial layout of association networks are systematically 

related to psychopathology in youth.  

This work builds on convergent studies from multiple independent efforts that have 

demonstrated that there is marked individual variability in the topography of functional networks 

(Anderson et al., 2021; Bijsterbosch et al., 2018; Braga and Buckner, 2017; Cui et al., 2020; 



Glasser et al., 2016; Gordon et al., 2017a; Gordon et al., 2017b; Gordon et al., 2017c; Greene et 

al., 2020; Kong et al., 2019; Laumann et al., 2015; Li et al., 2019; Wang et al., 2015; Wang et al., 

2018). Previous studies have reported that the individual variability of functional topography is 

maximum in association networks in adults (Cui et al., 2020; Gordon et al., 2017c; Kong et al., 

2019; Wang et al., 2015); we previously found that as in adulthood, this is also true in childhood 

and adolescence (Cui et al., 2020). The present data further revealed the clinical relevance of this 

variability, by demonstrating that individual variation in functional topography is dimensionally 

associated with diverse forms of psychopathology in youth.  

Current diagnostic systems (i.e., DSM) for psychiatric disorders assign patients into 

discrete categories based on signs and symptoms. However, it is increasingly recognized that these 

categories do not align with the underlying biology (Insel et al., 2010; Insel, 2014). Efforts 

including the RDoC initiative and HiTOP have been proposed given increasing empirical evidence 

that psychopathology is a dimensional phenomenon that is highly comorbid in nature, with the 

presence of one disorder increasing risk for the development of all others (Insel et al., 2010; Insel, 

2014; Kotov et al., 2017; Kotov et al., 2021). In the current study, we used a dimensional approach 

that accounts for a continuous spectrum of psychopathology (Kaczkurkin et al., 2019). We 

identified four correlated major dimensions of psychopathology (i.e., fear, psychosis, externalizing 

and anxious-misery) that cut across the boundaries of traditional diagnoses. To parsimoniously 

account for shared vulnerability to all four symptom dimensions, we also used a bifactor model to 

identify four orthogonal dimensions and one overall psychopathology factor that reflects the 

shared burden of psychopathology across the four correlated dimensions (Caspi and Moffitt, 2018; 

Kaczkurkin et al., 2019; Lahey et al., 2021; Moore et al., 2019; Shanmugan et al., 2016).  



We found that the topography of personalized functional networks significantly predicted 

the four major dimensions of psychopathology identified in our sample of youth. Although these 

dimensions are often considered independently, they are highly correlated. Perhaps as a result, we 

observed a substantial overlap between brain areas that strongly contributed to prediction across 

all four of the models, suggesting shared network contributions. We hypothesized that this overlap 

could be related to the clinical overlap among these dimensions, which reflects the high level of 

co-morbid psychopathology in individuals (Caspi and Moffitt, 2018; Lahey et al., 2021). Further 

analysis supported this interpretation by showing that the predictions were largely explained by 

the overall psychopathology factor. In particular, the contribution pattern predicting overall 

psychopathology overlapped with the features that predicted each of the four individual 

dimensions. Moreover, after accounting for the overall psychopathology factor, functional 

network topography no longer significantly predicted specific factors representing psychosis, 

externalizing, or anxious-misery dimensions. Together, these results suggest that individual 

variation in functional network topography may represent a broad vulnerability factor for trans-

diagnostic psychopathology.  

Consistent with our findings, previous transdiagnostic studies have reported common 

disrupted patterns of functional connectivity across mental disorders (Baker et al., 2019; Barron et 

al., 2020; Ma et al., 2020; Qi et al., 2020; Xia et al., 2018). Moreover, recent studies have 

demonstrated that the overall psychopathology factor is associated with abnormalities of both 

within- and between-network functional connectivity (Elliott et al., 2018; Karcher et al., 2020; 

Kebets et al., 2019). However, these studies calculated functional connectivity by applying a 

group-level functional atlas to each individual. Our results provide novel evidence that the spatial 

topography of the personalized functional networks is associated with the level of overall 



psychopathology. This is critical because topography and connectivity make distinct contributions 

to individual differences; using a group atlas for individuals’ data aliases the topographic signal 

into the measurement of connectivity (Bijsterbosch et al., 2018; Li et al., 2019). Future studies 

could leverage personalized functional network parcellations for the calculation of each 

individual’s functional connectivity to isolate the effects of both topography and connectivity 

(Gratton et al., 2019; Sylvester et al., 2020; Wang et al., 2018).  

Importantly, we found that association networks, most notably ventral attention and fronto-

parietal networks, predominantly displayed negative contribution weights in the multivariate 

prediction model of overall psychopathology severity, indicating that these networks were under-

reprsented in youth with greater symptom burdens. Though our cross-sectional study cannot 

identify the underlying causal sequence, our results suggest that an individual with a reduced 

cortical representation of these executive networks is more likely to suffer from psychopathology. 

Consistent with our results, previous studies have demonstrated that dysfunction of the fronto-

parietal (Baker et al., 2019; Cole et al., 2014; Xia et al., 2018) and ventral attention (Sheffield et 

al., 2017; Xia et al., 2018) networks is a common factor across a broad range of mental disorders. 

By summing the absolute contribution weights across the networks for each vertex, we observed 

that association cortex—which sits at the top of the sensorimotor-to-association cortical functional 

hierarchy (Margulies et al., 2016)—contributed the most to the prediction of overall 

psychopathology. This pattern may emerge given that association cortices support executive, 

social, and emotional mental functions implicated in psychopathology (Cole et al., 2014; Menon, 

2011). Furthermore, the development of association networks is defined by a prolonged plastic 

period that enhances vulnerability to abnormal development and thus dysfunction (Larsen and 

Luna, 2018; Sydnor et al., 2021). Moreover, greater inter-individual variability observed in 



association networks nearer the top of the cortical hierarchy may contribute to the large variation 

in psychological functions subserved by association cortex in both healthy and psychiatric 

populations (Cui et al., 2020; Kong et al., 2019; Mueller et al., 2013; Wang et al., 2015).  

Our prior study examining the refinement of functional network topography in youth 

established that the total cortical representation (relative extent) of individual association networks 

does not change over the developmental period of 8-23 years. Accordingly, the total amount of 

cortex that is occupied by each association network appears to be established earlier in life, during 

fetal, infant, or early childhood development. The relationship identified here between association 

network representation and overall psychopathology thus suggests that a shared vulnerability to 

diverse, comorbid, and severe psychiatric symptoms may be established early in life—with 

vulnerability transitioning to symptom manifestation throughout the course of the protracted 

development of association cortex. Critically, this may implicate developmental factors that are 

understood to determine the location and size of cortical functional areas in susceptibility to 

psychopathology, highlighting a path for future study. Such factors include patterning signaling 

molecules (e.g., fibroblast growth factors) that mechanistically regulate cortical arealization, as 

well as thalamo-cortical inputs that influence cortical area size and cortical properties during early 

development (Cadwell et al., 2019; Cholfin and Rubenstein, 2007; O'Leary et al., 2007).  

In our study, several potential limitations and countervailing strengths should be noted. 

First, all data presented were cross-sectional, which precludes inferences regarding within-

individual developmental effects. Studies with longitudinal sampling, such as the Adolescent Brain 

and Cognitive Development study (Casey et al., 2018) and the Human Connectome Project-

Development (Somerville et al., 2018), will facilitate studies of within-individual changes of 

functional topography. Second, we combined data from the three fMRI runs, including two where 



an fMRI task was regressed from the data. This approach was motivated by prior evidence that 

functional networks are primarily defined by individual-specific rather than task-specific factors 

(Gratton et al., 2018), and that intrinsic networks during task performance are similar to those 

present at rest (Fair et al., 2007). Therefore, by including the task-regressed data, we were able to 

generate individualized networks using 27 min of high-quality data, which showed high 

concordance (r ~ 0.92) with those generated using 380 min of data (Laumann et al., 2015). Third, 

certain important psychopathological classes, such as substance abuse, were not part of the 

screening interview and thus not included in the present analysis. Future studies may address this 

by considering broader assessments of psychopathology.  

Despite these limitations, our study provides novel evidence that personalized functional 

network topography is related to overall psychopathology in youth. These findings emphasize the 

relevance of personalized functional neuroanatomy to the neurobiological mechanisms of 

comorbidity across psychiatric disorders. Because overall psychopathology in part explains a 

person’s liability to diverse symptoms of mental illness, the potential predictive power of 

functional network topography could potentially aid in the early identification of youths who are 

at risk of psychopathology. Finally, these results motivate clinical trials of neuromodulatory 

interventions that are targeted using personalized functional neuroanatomy.  
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METHOD DETAILS 
 
Participants 

Overall, 1,601 participants were studied as part of the PNC (Satterthwaite et al., 2014). 

However, 154 participants were excluded due to clinical factors, including medical disorders that 

could affect brain function or incidentally encountered structural brain abnormalities. Among the 

1,447 subjects eligible for inclusion, 63 subjects were excluded for low quality in T1-weighted 

images or poor FreeSurfer reconstructions. Of the 1,384 subjects with usable T1 images and 

adequate FreeSurfer reconstructions, 594 participants were excluded for missing functional data 

or inadequate functional image quality; all participants were required to have three functional runs 

that passed quality assurance (QA). Specifically, as in prior work (Ciric et al., 2018; Satterthwaite 

et al., 2013a), a functional run was excluded if the mean relative root mean square (RMS) 

framewise displacement was higher than 0.2mm, or it had more than 20 frames with motion 

exceeding 0.25mm. This set of exclusion criteria resulted in a final sample of 790 participants 

(Figure S1), with a mean age of 16.04 years and a standard deviation (SD) of 3.21 years; the 

sample included 354 males and 436 females. All subjects or their parent/guardian provided 

informed consent, and minors provided assent. All study procedures were approved by the 

Institutional Review Boards of both the University of Pennsylvania and the Children’s Hospital of 

Philadelphia.  

 
Clinical assessment 

Psychopathology symptoms were evaluated using a structured screening interview 

(GOASSESS), which has been described previously (Calkins et al., 2015; Calkins et al., 2017; 

Kaczkurkin et al., 2019; Shanmugan et al., 2016). GOASSESS is a structured screening interview 

based on a modified version of the Kiddie-Schedule for Affective Disorders and Schizophrenia 



(Kaufman et al., 1997) and Diagnostic and Statistical Manual of Mental Disorders, 4th edition, 

Text Revision (Edition, 2013) criteria. In the PNC, the GOASSESS interview was administered 

by trained assessors who had undergone a common training protocol that included didactic 

sessions, assigned readings, and supervised observations. Before the experiment, all assessors were 

certified for conducting independent assessments, as evaluated by a 60-item checklist of interview 

procedures.  

Before the experiment, all assessors had been certified for conducting independent 

assessments, as assessed using a 60-item checklist of interview procedures.  

The GOASSESS psychopathology screen assesses the lifetime occurrence of psychosis 

spectrum symptoms, mood (major depressive episode and mania), anxiety (agoraphobia, 

generalized anxiety, panic, specific phobia, social phobia, separation anxiety, posttraumatic stress), 

behavioral disorders (oppositional defiant, attention deficit/hyperactivity, and conduct disorder), 

eating disorder (anorexia and bulimia), and suicidal thinking and behaviors. The 112 screening 

items (Supplementary Data) were administered to all participants. The frequency and relevant 

demographic data for each screening diagnosis considered are detailed in Table S1. Due to 

comorbidity, participants may be represented in more than one category. The median interval of 

time between clinical assessment and neuroimaging was 2 months.  

 

Exploratory Factor Analysis 

As described elsewhere (Calkins et al., 2015; Kaczkurkin et al., 2018; Moore et al., 2019; 

Shanmugan et al., 2016), we conducted an exploratory factor analysis of the 112 item-level 

psychopathology symptoms based on the matrix of tetrachoric inter-item correlations (within the 



psycho package in R). We identified four correlated dimensions of psychopathology (Figure 2): 

fear (phobias), psychosis, externalizing, and anxious-misery (mood and anxiety).  

 

Confirmatory Factor analysis 

Since the four dimensions acquired from the exploratory factor analysis were correlated, 

we hypothesized that there would be one general psychopathology factor (Caspi et al., 2014), 

which underlies the observed associations between these correlated dimensions. To test this 

hypothesis, we used a confirmatory bifactor analysis to parse the 112 item-level psychopathology 

symptoms into orthogonal dimensions of psychopathology (Calkins et al., 2015; Clark et al., 2021; 

Kaczkurkin et al., 2018; Moore et al., 2019; Shanmugan et al., 2016). The confirmatory bifactor 

model was estimated using a Bayesian estimator in Mplus (Muthen and Asparouhov, 2012). In a 

bifactor model, items load on up to two factors simultaneously, including their own “specific” 

factor and a general factor. The model generated five orthogonal dimensions of psychopathology 

(Figure 5): fear, psychosis, externalizing, anxious-misery, and overall psychopathology, the latter 

of which describes a shared vulnerability to a broad range of symptoms across mental disorders.  

 

Image acquisition 

As previously described (Satterthwaite et al., 2014), all MRI scans were acquired using 

the same 3T Siemens Tim Trio whole-body scanner and 32-channel head coil at the Hospital of 

the University of Pennsylvania. 

Structural MRI: Prior to the functional MRI acquisitions, a 5-min magnetization-

prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR = 1810 ms; TE = 

3.51 ms; TI = 1100 ms, FOV = 180 × 240 mm2, matrix = 192 × 256, effective voxel resolution = 



0.9 × 0.9 × 1 mm3) was acquired. 

Functional MRI: We used one resting-state and two task-based (i.e., n-back and emotion 

identification) fMRI scans as part of this study. All fMRI scans were acquired with the same single-

shot, interleaved multi-slice, gradient-echo, echo planar imaging (GE-EPI) sequence sensitive to 

BOLD contrast with the following parameters: TR = 3000 ms; TE = 32 ms; flip angle = 90°; FOV 

= 192 × 192 mm2; matrix = 64 × 64; 46 slices; slice thickness/gap = 3/0 mm, effective voxel 

resolution = 3.0 × 3.0 × 3.0 mm3. Resting-state scans had 124 volumes, while the n-back and 

emotion recognition scans had 231 and 210 volumes, respectively. Further details regarding the n-

back (Satterthwaite et al., 2013b) and emotion recognition (Wolf et al., 2015) tasks have been 

described in prior publications. 

Field map: In addition, a B0 field map was derived for the application of distortion 

correction procedures, using a double-echo, gradient-recalled echo (GRE) sequence: TR = 

1000ms; TE1 = 2.69ms; TE2 = 5.27ms; 44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; 

effective voxel resolution = 3.8×3.8×4 mm.  

Scanning procedure: To acclimate subjects to the MRI environment before scanning, a 

mock scanning session where subjects practiced the task was conducted using a decommissioned 

MRI scanner and head coil. Mock scanning was accompanied by acoustic recordings of the noise 

produced by gradient coils for each scanning pulse sequence. During these sessions, feedback 

regarding head movement was provided using the MoTrack motion tracking system (Psychology 

Software Tools). Motion feedback was given only during the mock scanning session. To further 

minimize participants’ motion, before data acquisition, participants’ head was stabilized in the head 

coil using one foam pad over each ear and a third over the top of the head.  

 



Image processing 

The structural images were processed using FreeSurfer (version 5.3) to allow for the 

projection of functional time series to the cortical surface (Fischl, 2012). The functional images 

were processed using a top-performing preprocessing pipeline implemented via the eXtensible 

Connectivity Pipeline (XCP) Engine (Ciric et al., 2018), which includes tools from FSL (Jenkinson 

et al., 2012; Smith et al., 2004), AFNI (Cox, 1996) and ANTs (Avants et al., 2009). This pipeline 

included: (1) the correction for distortions induced by magnetic field inhomogeneity using FSL’s 

FUGUE utility; (2) the removal of the initial volumes of each acquisition (i.e., 4 volumes for the 

resting-state fMRI and 6 volumes for the emotion recognition task fMRI); (3) the realignment of 

all volumes to a selected reference volume using FSL’s MCFLIRT; (4) the interpolation of intensity 

outliers in each voxel’s time series using AFNI’s 3dDespike utility; (5) the demeaning and removal 

of any linear or quadratic trends; (6) the co-registration of functional data to the high-resolution 

structural image using boundary-based registration. The acquired images were de-noised through 

a 36-parameter confound regression model that has been shown to minimize associations with 

motion artifact while retaining the signals of interest in distinct sub-networks. This model included 

the six framewise estimates of motion, the mean signal extracted from eroded white matter and 

cerebrospinal fluid compartments, the mean signal extracted from the entire brain, as well as the 

derivatives of each of these nine aforementioned parameters, and quadratic terms of each of the 

nine parameters and their derivatives.  

Both the BOLD-weighted time series and the artefactual model time series were temporally 

filtered using a first-order Butterworth filter with a passband between 0.01 and 0.08 HZ to avoid 

mismatch in the temporal domain (Hallquist et al., 2013). Furthermore, to derive “pseudo-resting 

state” time series that were comparable across runs, the task activation model was regressed from 



n-back or emotion identification fMRI data (Fair et al., 2007). The task activation model and 

nuisance matrix were regressed out using AFNI’s 3dTproject.  

For each modality, the fMRI time series of each individual was projected to each subject’s 

FreeSurfer surface reconstruction and smoothed on the surface with a 6-mm full-width half-

maximum (FWHM) kernel. The smoothed data was then projected to the fsaverage5 template, 

which has 10,242 vertices on each hemisphere (18,715 vertices in total after removing the medial 

wall). Finally, we concatenated the three fMRI acquisitions, yielding 27 minutes and 45 seconds 

(555 time points) of functional data for each subject. As in the work from other groups (Gordon et 

al., 2016; Ojemann et al., 1997; Wig et al., 2014) and our prior work (Cui et al., 2020), we removed 

vertices with low signal-to-noise ratio (SNR), which mainly localized to the orbitofrontal cortex 

and ventral temporal cortex. The resulting inclusion mask consisted of 17,754 vertices. 

 

Regularized non-negative matrix factorization  

As previously described (Li et al., 2017), we used non-negative matrix factorization (NMF; 

Lee and Seung (1999) to derive individualized functional networks. The NMF method factorizes 

the data by weighting cortical elements that positively covary, which leads to a highly specific and 

reproducible parts-based representation (Lee and Seung, 1999; Sotiras et al., 2017). Our approach 

was enhanced by a group consensus regularization term that preserves inter-individual 

correspondence, as well as a data locality regularization term that makes the decomposition robust 

to imaging noise, improves spatial smoothness, and enhances functional coherence of the subject-

specific functional networks (see Li et al. (2017) for details of the method; see also: 

https://github.com/hmlicas/Collaborative_Brain_Decomposition). As NMF requires the input to 

be nonnegative values, we re-scaled the data by shifting time courses of each vertex linearly to 



ensure all values were positive (Li et al., 2017). To avoid features in greater numeric ranges 

dominating those in smaller numeric range, we further normalized the vertex-wise time course by 

its maximum value so that all the time points would have values in the range of [0, 1]. 

Given a group of n subjects, each having fMRI data 𝑋! ∈ 𝑅×, 𝑖 = 1,… , 𝑛, consisting of S 

vertices and T time points, we aimed to find K non-negative functional networks 𝑉! = (𝑉#,%! ) ∈

𝑅&×' and their corresponding time courses 𝑈! = (𝑈(,%! ) ∈ 𝑅)×' for each subject, such that 

𝑋! ≈ 𝑈!/𝑉!0* + 𝐸! , 𝑠. 𝑡. 𝑈! , 𝑉! ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛, 

where (𝑉!)′ is the transpose of (𝑉!), and 𝐸!  is independently and identically distributed (i.i.d) 

residual noise following Gaussian distribution with a probability density function of 𝑔(𝑥) =

+
√-./

𝑒0
!"

"#". Both 𝑈! and 𝑉! were constrained to be non-negative so that each functional network 

does not contain any anti-correlated functional units (Lee and Seung, 1999). A group consensus 

regularization term was applied to ensure inter-individual correspondence, which was 

implemented as a scale-invariant group sparsity term on each column of 𝑉! and formulated as 

𝑅1 = ∑ ?𝑉∙,%
+,..,4?
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The data locality regularization term was applied to encourage spatial smoothness and 

coherence of the functional networks using graph regularization techniques (Cai et al., 2011). 

The data locality regularization term was formulated as  

𝑅:! = 𝑇𝑟((𝑉!)′𝐿:! 𝑉!), 

where 𝐿:! = 𝐷:! −𝑊:
!  is a Laplacian matrix for subject I, 𝑊:

!  is a pairwise affinity matrix to 



measure spatial closeness or functional similarity between different vertices, and 𝐷:!  is its 

corresponding degree matrix. The affinity between each pair of spatially connected vertices (i.e., 

vertices a and b) was calculated as G1 + 𝑐𝑜𝑟𝑟/𝑋.,;! , 𝑋.,<! 0J /2, where 𝑐𝑜𝑟𝑟(𝑋.,;! , 𝑋.,<! ) is the Pearson 

correlation coefficient between time series 𝑋.,;!  and 𝑋.,<! , and others were set to zero so that 𝑊:
!  has 

a sparse structure. We identified subject-specific functional networks by optimizing a joint model 

with integrated data fitting and regularization terms formulated by 

𝑚𝑖𝑛
(𝑈! , 𝑉!)∑ ?𝑋! − 𝑈!/𝑉!0?

=
- + 𝜆: ∑ 𝑅:!4

!5+
4
!5+ + 𝜆1𝑅1, 

𝑠. 𝑡. 𝑈! , 𝑉! ≥ 0, ?𝑉.,%! ?> = 1, ∀1 ≤ 𝑘 ≤ 𝐾, ∀1 ≤ 𝑖 ≤ 𝑛 

where 𝜆: = 𝛽 × )
'×4-

 and 𝜆1 = 𝛼 ∙ 4∙)
'

 are used to balance the data fitting, data locality, and group 

consensus regularization terms, 𝑛: is the number of neighboring vertices, and 𝛼 and 𝛽 are free 

parameters. For this study, we used identical parameter settings as in prior validation studies (Li 

et al., 2017). 

 

Defining individualized networks 

Our approach for defining individualized networks included three steps (see Figure S2). In 

the first two steps, a consensus group atlas was created. In the third step, this group atlas was used 

to define individualized networks for each participant. We decomposed the whole-brain into 17 

networks, which allowed for a direct comparison to the other methods used in prior work (Kong 

et al., 2019; Wang et al., 2015; Yeo et al., 2011). 

Step 1: Group network initialization. Although individuals exhibit distinct network 

topography, they are also broadly consistent (Gordon et al., 2017c; Gratton et al., 2018). Therefore, 



we first generated a group atlas and used it as an initialization for the definition of individualized 

networks. In this way, we also ensured spatial correspondence across all subjects. This strategy has 

also been applied in other methods for individualized network definitions (Kong et al., 2019; Wang 

et al., 2015). To avoid the group atlas being driven by outliers and to reduce the computational 

memory cost, a bootstrap strategy was utilized to perform the group-level decomposition multiple 

times on a subset of randomly selected subjects.  

Subsequently, the resulting decomposition results were fused to obtain one robust 

initialization that is highly reproducible. As in our prior work (Cui et al., 2020; Li et al., 2017), we 

randomly selected 100 subjects and temporally concatenated their time series, resulting in a time 

series matrix with 55,500 rows (time-points) and 17,754 columns (vertices). Using a random non-

negative initialization, we applied the above-mentioned regularized non-negative matrix 

factorization method to decompose this matrix into 17 functional networks (Lee and Seung, 1999). 

A group-level network loading matrix V was acquired, which had 17 rows and 17,754 columns. 

Each row of this matrix represented a functional network, while each column represented the 

loadings of a given cortical vertex. As in prior work (Li et al., 2017), this procedure was repeated 

50 times, each time with a different subset of subjects; this procedure yielded 50 different group 

atlases. 

Step 2: Group network consensus. Next, we combined the 50 group network atlases to obtain 

one robust and highly reproducible group network atlas using spectral clustering (Li et al., 2017). 

Specifically, we concatenated the 50 group parcellations together across networks and acquired a 

matrix with 850 rows (i.e., functional networks, abbreviated as FN) and 17,754 columns (i.e., 

vertices). The inter-network similarity was calculated as 

𝑆!? = 𝑒𝑥 𝑝 W−
@'.
"

/"
X, 



where 𝑑!? = 1 − 𝑐𝑜𝑟𝑟/𝐹𝑁! , 𝐹𝑁?0, 𝑐𝑜𝑟𝑟/𝐹𝑁! , 𝐹𝑁?0 is the Pearson correlation coefficient between 

𝐹𝑁!   and 𝐹𝑁?, and 𝜎 is the median of 𝑑!? across all possible pairs of FNs. Then, we applied the 

normalized-cuts (Cai et al., 2011) spectral clustering method to group the 850 FNs into 17 clusters. 

For each cluster, the FN with the highest overall similarity with all other FNs within the same 

cluster was selected as the most representative FN. The final group network atlas was composed 

of these maximally representative functional networks from each of the 17 clusters.  

Step 3: Individualized networks. In this final step, we derived each individual’s specific 

network atlas using the acquired group networks (17 ´ 17,754 loading matrix) as the initialization 

and each individual’s specific fMRI times series (555 ´ 17,754 matrix). See (Li et al., 2017) for 

optimization details. This procedure yielded a loading matrix V (17 ´ 17,754 matrix) for each 

participant, where each row is a FN, each column is a vertex, and the value quantifies the extent 

to which each vertex belongs to each network. This probabilistic (soft) definition can be converted 

into discrete (hard) network definitions for display and comparison with other methods (Kong et 

al., 2019; Wang et al., 2015; Yeo et al., 2011) by labeling each vertex according to its highest 

loading.  

 

Across-subject variability of functional network topography 

Prior studies have observed that across-subject variability of functional networks is higher 

in association networks and lower in primary sensorimotor networks in both adults (Gordon et al., 

2017b; Gordon et al., 2017c; Kong et al., 2019; Li et al., 2019; Mueller et al., 2013; Wang et al., 

2015) and youth (Cui et al., 2020). Here, we evaluated this observation in this sample, which 

included both healthy youths and youths with mental disorders. For each of the 17 networks, we 

calculated the median absolute deviation of loading values across all the subjects for each vertex. 



Next, we averaged the 17 median absolute deviation maps to generate the final across-network 

variability map that quantified the across-subject parcellation variance at each vertex.  

 

Prediction of psychopathology factors from functional network topography using partial 

least square regression (PLS-R) 

We evaluated whether the multivariate spatial pattern of functional network topography 

encodes psychopathology. To address this question, we used partial least square regression (PLS-

R) with nested two-fold cross validation (2F-CV, see Figure S5) to test whether multivariate 

network topography patterns could be used to identify the score of an unseen individual’s 

psychopathology factor in an unbiased fashion. We combined the loading maps of 17 networks 

into a feature vector to represent the multivariate spatial pattern of network topography of each 

individual. Then, we used these features to predict the four correlated dimensions of 

psychopathology (i.e., fear, psychosis, externalizing and anxious-misery) from the correlated traits 

model. Subsequently the same methods were used to predict each dimension (including overall 

psychopathology) from the bifactor model. 

Partial least square regression (PLS-R): 

PLS-R combines advantages from principal component analysis (PCA) and multiple linear 

regression to find orthogonal latent components to accurately predict outcomes. In contrast to other 

machine learning techniques (i.e., ridge regression) that using all features, PLS-R selected optimal 

latent components to do the prediction. Therefore, PLS-R could better suit in predicting 

dimensions of psychopathology, as prior studies have consistently demonstrated these dimensions 

are related to dissociated patterns of both brain structure and function (Kaczkurkin et al., 2019; 

Shanmugan et al., 2016; Xia et al., 2018). Here, we used the scikit-learn library to implement 



partial least square regression ((Pedregosa et al., 2011); algorithm ‘PLSRegression’ available at 

https://scikit-learn.org/stable/modules/cross_decomposition.html).  

We set X to be a matrix of functional network topography with each row representing a 

participant and each column representing a feature, which was the network loading of one vertex 

in one network. We set Y to be a column vector of participants’ psychopathology factor scores. In 

contrast to PCA, which finds latent components to maximize the covariance within X, PLS-R 

searches for latent components that maximizes the covariance between X and Y by performing a 

double decomposition of X and Y using singular value decomposition (SVD). In this way, PLS-R 

seeks to find a set of orthogonal latent components of X that predict Y as accurate as possible 

(Abdi, 2003; Krishnan et al., 2011; Yoo et al., 2018).  

PLS-R uses iterative applications of SVD to estimate latent components (Abdi, 2003). In 

each iteration, PLS-R finds the latent components of X, then subtracts the acquired latent 

components from the original X to yield the deflated matrix Xdeflated, which is used as the initial X 

for the next iteration. Similarly, the deflated matrix Ydeflated is updated by subtracting the 

corresponding predicted Y from the original Y in each iteration. We repeated this process until X 

was decomposed into L components. L was determined to be the optimal number of components 

via nested cross-validation (see the description in the Prediction framework below). During the 

optimization, PLS-R also fits the regression coefficients for each latent component to predict Y 

using multiple linear regression. By mapping these regression coefficients back to each functional 

topography feature (i.e., network loading), we generated one regression weight for each feature. 

The absolute values of these weights quantify the contribution of each functional topography 

feature to the prediction.  

 



Prediction framework 

We applied a nested 2-fold cross validation (2F-CV), with the outer 2F-CV estimating the 

generalizability of the model and the inner 2F-CV determining the optimal parameter (i.e., 

component number L) for the partial least square regression (See Figure S5 for schematic of the 

prediction framework). 

 

Outer 2F-CV 

In the outer 2F-CV, the data was randomly divided into 2 subsets. We initially used subset 

1 as the training set and subset 2 as the testing set. We regressed out age, sex and in-scanner head 

motion from each feature using a linear model on training data. To prevent leakage, the acquired 

beta coefficients were used to regress out these confounding factors from testing data. Then, each 

feature was linearly scaled between zero and one across the training dataset, and the acquired 

scaling parameters were also applied to scale the testing dataset (Cui and Gong, 2018; Cui et al., 

2020). We applied an inner 2-fold cross validation (2F-CV) within the training set to select the 

optimal number (L) of components. Based on the optimal L, we trained a model using all subjects 

in the training set, and then used that model to predict the outcomes of all the subjects in the testing 

set. Analogously, we used subset 2 as the training set and subset 1 as the testing set, and repeated 

the above procedure. Across the testing subjects for each subset, the correlation and mean absolute 

error (MAE) between the predicted and actual outcomes were used to quantify the prediction 

accuracy. Both correlations and MAEs were averaged across two subsets to quantify the overall 

correlation and overall MAE.  

Inner 2F-CV 



Within each loop of the outer 2F-CV, we applied inner 2F-CVs to determine the optimal 

component number L. Specifically, the training set for each loop of the outer 2F-CV was further 

partitioned into 2 subsets randomly. One subset was selected to train the model under a given L in 

the range [1, 2, 3, …, 8, 9, 10], and the remaining subset was used to test the model. This procedure 

was repeated 2 times such that each subset would be used once as the testing dataset, resulting in 

two inner 2F-CV loops in total. For each value of L, the correlation r between the actual and the 

predicted outcome as well as the mean absolute error (MAE) were calculated for each inner 2F-

CV loop, and then averaged across the two inner loops. The sum of the mean correlation r and 

reciprocal of the mean MAE was defined as the inner prediction accuracy, and the L with the 

highest inner prediction accuracy was chosen as the optimal parameter. Of note, the mean 

correlation r and the reciprocal of mean MAE cannot be summed directly, because the scales of 

the raw values of these two measures are quite different. Therefore, we normalized (using a z-

score) the mean correlation r and the reciprocal of the mean MAE across all values and then 

summed the resultant normalized values. 

Because the split was random, we repeated outer 2F-CV 101 times and calculated the 

median prediction accuracy (i.e., correlation r or MAE) across all 101 resamples to determine the 

overall prediction accuracy. We used 101 resamples rather than 100 to facilitate the selection of a 

median value. We visualized the scatter plot of the correlation between the predicted and actual 

scores for the repetition with median prediction accuracy. For computational efficiency, we 

executed the inner 2F-CV 20 times (Cui et al., 2020).  

 

Significance of prediction performance 



To evaluate whether prediction performance (i.e., correlation) was significantly better than 

expected by chance, we performed a permutation test (Mourao-Miranda et al., 2005). Specifically, 

the prediction procedure was re-applied 1,000 times. In each run, we permuted psychopathology 

factors across the training samples without replacement. Significance was determined by ranking 

the true prediction accuracy versus this permuted distribution. The p-value of the correlation r was 

the proportion of permutations that exhibited a higher value than the actual value (i.e., median 

correlation r) for the real data.  

 

Interpreting model feature weights 

From 101 repetitions of random 2F-CV, we acquired 202 regression coefficient or weight 

maps for each network. We calculated the median weight for each feature (i.e., loading of a vertex 

in one network), the absolute value of which quantifies the contribution of this feature to the model 

(Cui et al., 2020; Mourao-Miranda et al., 2005). To understand which network contributed the 

most to predictions, we summed the contribution weights across all vertices in each network. 

Finally, we calculated the spatial contribution of all vertices, in which we summed the absolute 

weight across all 17 networks to summarize the prediction weight of each vertex. This sum 

represented the importance of a given vertex to the predictive model.  

 

Linking functional network topography and pattern of psychopathology items using partial 

least square correlation (PLS-C) 

Having demonstrated that the functional topography predicted unseen individual’s 

psychopathology factor scores, we further validated the association between topography and 

psychopathology by relating functional topography to item-level psychopathology data. In contrast 



to the analysis above (where clinical information was reduced to factor scores), here Y is a matrix 

with 790 rows and 112 columns, in which each row represents a participant and each column 

represents a single psychopathology item. We employed partial least square correlation (PLS-C) 

to examine the relationship between the two matrices (i.e., X and Y). Specifically, we used the 

scikit-learn library to implement partial least square regression (See Pedregosa et al. (2011); 

algorithm ‘PLSCanonical’ available at https://scikit-

learn.org/stable/modules/cross_decomposition.html) 

PLS-C also uses iterative applications of SVD to decompose the cross-product between 

functional topography matrix (X) and the item-level psychopathology matrix (Y). In contrast to 

PLS-R, which aims to find the latent components of X to predict Y, PLS-C aims to find pairs of 

latent components lX and lY with maximal covariance (Krishnan et al., 2011). Another difference 

from PLS-R, which updates the deflated matrix Ydeflated using the predicted Y in each iteration, is 

that PLS-C updates the deflated matrix Ydeflated using the latent components of Y (i.e., lY). The 

PLS-C model generated 112 pairs of latent components in total, as there were 112 psychopathology 

items. Each latent component represented a distinct pattern that relates a weighted set of 

psychopathology items to a weighted set of functional topography features. We calculated the 

median covariance explained by each component across repeated (i.e., 101) runs of 2F-CV. In our 

study, we focused on the first pair of latent components, which captured the highest and the most 

stable covariance (Figure S10). As in PLS-R analysis, we used repeated 2F-CVs (i.e., 101 

repetitions) to evaluate the out-of-sample correlation of the first pair of latent components; we used 

the median correlation value across the 101 repetitions to summarize the overall association. 

Permutation testing (i.e., 1,000 times) was applied to test whether this correlation was significantly 

better than expected by chance.  



As in prior work (Griffis et al., 2019; Karlaftis et al., 2019), we first evaluated the stability 

of the contribution weight of each psychopathology item to the first component to understand 

which items contributed to the multivariate model. As we repeated the 2-fold cross-validation 101 

times, a total of 202 patterns of contribution weight were created for the first component. This 

procedure resulted in a distribution of contribution weight per psychopathology item. Random 

sampling can potentially induce arbitrary axis rotation, changing the ordering of canonical variates. 

Additionally, random sampling can induce axis reflection, which causes a sign change for the 

weights (Xia et al., 2018). In our data, the first pair of latent components was robust to arbitrary 

axis rotation, due to much higher X-Y covariance than the other components (Figure S10). To 

solve the axis reflection issue, we flipped the sign of the weight in all the psychopathology items 

and in all the functional topography features if the sign was negative in more than one half of 

psychopathology items. We calculated the z-score (i.e., mean/SD) of each psychopathology item 

across the 202 contribution weights. Psychopathology items with |z| > 2.576 were deemed to be 

significant contributors to the first component (Griffis et al., 2019; Karlaftis et al., 2019). We next 

sought to understand the contribution of functional topography to the first latent component. As 

PLS-R analysis, we acquired 202 weight maps and calculated the median weight for each vertex. 

We summed the contribution weights across all vertices in each network to understand which 

network contributed the most to predictions. Finally, we summed the absolute weight of each 

vertex across all 17 networks to summarize the spatial contribution of all vertices. 

    

Spatial permutation testing (spin test) 

In order to evaluate the significance of the alignment among cortical contribution patterns 

as well as between contribution patterns and cortical functional hierarchy, we used a spatial 



permutation procedure called the spin test (Alexander-Bloch et al., 2018; Gordon et al., 2016; 

Sotiras et al., 2017; Vandekar et al., 2015) (https://github.com/spin-test/spin-test). The spin test is 

a spatial permutation method based on angular permutations of spherical projections at the cortical 

surface. Critically, the spin test preserves the spatial covariance structure of the data and 

consequently is far more conservative than randomly shuffling locations, which destroys the 

spatial covariance structure of the data and produces an unrealistically weak null distribution. In 

contrast, the spin test generates a null distribution of randomly rotated brain maps that preserve 

spatial features of the original map. 

 

Visualization 

Connectome Workbench (version: 1.3.2) (Marcus et al., 2013); available at 

https://www.humanconnectome.org/software/connectome-workbench) was used to visualize the 

brain surface.  

 

Data & code availability 

The PNC data is publicly available in the Database of Genotypes and Phenotypes: 

accession number: phs000607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2. All analysis code is available here: 

https://github.com/ZaixuCui/pncsinglefuncparcel_psychopathology, with detailed explanation in 

https://zaixucui.github.io/pncsinglefuncparcel_psychopathology. 

 



Table S1. Summary of demographic and clinical data. 
 
Measure   
 Mean SD 
Age (years) 16.04 3.21 
 N % 
Male  354 45 
Lifetime prevalencea   
    Typically developing 245 31 
    Attention deficit hyperactivity disorder 114 14 
    Agoraphobia 47 6 
    Anorexia nervosa 10 1 
    Bulimia nervosa 3 <1 
    Conduct disorder 64 8 
    Generalized anxiety disorder 14 2 
    Mania 10 1 
    Major depressive disorder 132 17 
    Obsessive-compulsive disorder 21 3 
    Oppositional defiant disorder 236 30 
    Panic 5 <1 
    Psychosis spectrum symptoms 226 29 
    Posttraumatic stress disorder 99 13 
    Separation anxiety 34 4 
    Social phobia 189 24 
    Specific phobia 242 31 
a Because of comorbidity, many participants met the criteria for more than one disorder and were 
counted in multiple categories.  
SD: standard deviation.  



Table S2. A total of 108 psychopathology items contributed to the first latent component from 
partial least square correlation analysis.  
 

Num Item 
Name 

Weight 
(z) 

 Num Item 
Name 

Weight 
(z) 

 Num Item 
Name 

Weight 
(z) 

1 sip007 15.27 39 add020 8.32 77 ocd018 5.66 
2 sip011 12.50 40 sip014 8.29 78 odd005 5.62 
3 dep004 12.30 41 cdd008 8.24 79 sip028 5.32 
4 man007 12.10 42 man005 7.93 80 pan001 5.25 
5 sip003 11.91 43 soc004 7.86 81 ocd011 5.19 
6 sip013 11.67 44 add014 7.80 82 sip032 5.16 
7 sip005 11.43 45 dep002 7.78 83 agr002 5.02 
8 ocd005 11.30 46 ocd013 7.73 84 ptd009 4.99 
9 odd006 11.19 47 sip004 7.72 85 sep509 4.84 
10 soc005 10.69 48 sui001 7.52 86 sip038 4.80 
11 sip006 10.66 49 soc002 7.52 87 psy050 4.76 
12 agr005 10.60 50 pan003 7.40 88 sip039 4.54 
13 ocd004 10.40 51 ocd002 7.33 89 cdd005 4.52 
14 sip012 10.29 52 phb002 7.29 90 phb008 4.50 
15 odd002 10.14 53 odd003 7.24 91 cdd007 4.49 
16 sip009 9.94 54 agr004 7.16 92 ocd012 4.44 
17 ocd006 9.88 55 phb006 7.11 93 cdd002 4.41 
18 man002 9.85 56 psy001 7.09 94 ocd003 4.40 
19 agr001 9.85 57 dep001 6.87 95 cdd001 4.27 
20 dep006 9.59 58 psy071 6.87 96 sui002 4.22 
21 agr008 9.57 59 sip033 6.77 97 scr008 4.11 
22 agr006 9.52 60 ocd008 6.75 98 agr007 4.07 
23 man006 9.38 61 ocd016 6.62 99 agr003 4.04 
24 soc001 9.26 62 ocd014 6.58 100 gad001 3.83 
25 psy060 9.26 63 add012 6.47 101 sip027 3.81 
26 man004 9.23 64 add021 6.44 102 gad002 3.76 
27 sip010 9.10 65 ocd001 6.25 103 ocd007 3.62 
28 add016 9.06 66 add022 6.15 104 phb005 3.41 
29 phb004 8.99 67 sep500 6.10 105 scr001 3.35 
30 man001 8.95 68 phb001 6.00 106 cdd003 3.22 
31 phb007 8.73 69 pan004 6.00 107 ocd015 3.00 
32 add015 8.68 70 sep510 5.87 108 cdd006 2.86 
33 psy029 8.63 71 sep508 5.84 109 cdd004 1.76 
34 add011 8.61 72 phb003 5.82 110 scr007 1.33 
35 odd001 8.46 73 psy070 5.81 111 sep511 1.31 
36 man003 8.40 74 add013 5.80 112 scr006 1.11 
37 ocd019 8.36 75 ocd017 5.76    
38 sip008 8.35 76 soc003 5.69    

The stability of contribution weight was evaluated by calculating the z-score (i.e., mean/SD) across 
repetitions. The four items that did not significantly contribute to the first component are marked 
with red color. See Supplementary Data for the question for each item.   



 

 
 
Figure S1. Sample construction. The cross-sectional sample of the Philadelphia 
Neurodevelopmental Cohort (PNC) includes 1601 participants in total. 154 participants were 
excluded because of clinical factors, including medical disorders that could affect brain function 
or incidentally encountered structural brain abnormalities. Then, 657 additional participants were 
excluded because of low quality of T1 or fMRI data. The final sample consisted of the remaining 
790 participants.  
 
 
  



 

Figure S2. Schematic of spatially regularized non-negative matrix factorization (NMF) for 
individualized network parcellation. Related to STAR Methods. Each subject had three fMRI 
runs; we concatenated these for each subject, resulting in a 27.4-minutes time series with 555 time 
points for each subject. In the first step, we randomly selected 100 subjects and concatenated their 
time series into a matrix with 55,500 time points (rows) and 17,754 vertices (columns). Non- 
negative matrix factorization was used to decompose this data into a timeseries matrix and loading 
matrix. The loading matrix had 17 rows and 17,754 columns, which encoded the membership of 
each vertex for each network. This procedure was repeated 50 times, with each run including a 
different subset of 100 subjects. In the second step, a normalized-cut spectral clustering method 
was applied to cluster the 50 loading matrices into one consensus loading matrix, which served as 
the group atlas and ensured correspondence across individuals. In the third step, NMF was used to 
calculate individualized networks for each participant, with the group atlas used as a prior.  
  



 

 
 
Figure S3. Across-subject variability of functional network topography is highest in 
association cortex. (A) A non-parametric measure of variability revealed that functional 
topography was most variable across individuals in association cortex and least variable in 
sensorimotor cortex. (B) Summarizing the cortical variability map by discrete functional networks 
confirmed that across-subject variability was highest in association networks, including the fronto-
parietal, dorsal attention, default mode, and ventral attention networks.  
  



 
Figure S4. Factor scores of the four dimensions from the correlated traits exploratory factor 
model were correlated with each other. 
 
 
 
 
 
 



 
 
Figure S5. Schematic overview of one outer loop of the nested 2-fold cross-validation (2F-
CV) prediction framework. All participants were divided into 2 halves randomly, with the first 
half used as a training set and the second half used as a testing set. We controlled for age, sex, and 
in-scanner motion from each feature in the training dataset, and then used the acquired coefficients 
to regress these covariates from the testing dataset. Each feature was linearly scaled between zero 
and one across the training dataset, and the scaling parameters were also applied to scale the testing 
dataset. An inner 2F-CV was applied within the training set to select the optimal parameter: 
component number L. Based on the optimal parameter, we trained a model using participants in 
the training set, and then used that model to predict the psychopathology scores of participants in 
the testing set. The prediction accuracy was evaluated by using the correlation r and mean absolute 
error between predicted and actual scores across participants in testing set.  
  



 
 
Figure S6. Feature weight maps from predictive analysis are highly correlated with each 
other. See Figure 4 E, F, G, H for the contribution maps of each of the four dimensions.  
 
  



 

 
 
Figure S7. Features contributing to the multivariate prediction model of overall 
psychopathology. Contribution maps are thresholded to include vertices with the highest (first 
25%) absolute contribution weight; underlay depicts the group network atlas. FP: fronto-parietal; 
VA: ventral attention; DA: dorsal attention; DM: default mode; AU: auditory; SM: somatomotor; 
VS: visual.  
  



 
 
Figure S8. Principal gradient of functional connectivity from Margulies et al., 2016.  
  



 

Figure S9. Patterns of functional topography that predict fear symptoms. (A) Functional 
topography predicted unseen individuals’ burden of specific fear symptoms quantified using the 
bifactor model. Data points represent the predicted scores of the participants in a model trained on 
independent data using 2-fold cross validation. P values derived from permutation testing with 
Bonferroni correction indicated that the prediction accuracy (i.e., correlation r) was significantly 
higher than that expected by chance. Panel (B) shows the distribution of prediction accuracies (i.e., 
correlation r) from permutation testing (small dots and histogram/boxplot) and the actual 
prediction accuracy (large red dot). (C) The fronto-parietal networks contained the greatest 
negative contribution weights, indicative of an inverse relationship between the total cortical 
representation of these networks and the fear factor. (D) The most highly weighted vertices in 
fronto-parietal network (i.e., network 17) mainly displayed negative contribution weights. (E) The 
most highly weighted vertices in dorsal attention network (i.e., network 13) mainly displayed 
positive contribution weights. FP: fronto-parietal; VA: ventral attention; DA: dorsal attention; DM: 
default mode; AU: auditory; SM: somatomotor; VS: visual.  
  



 

 

Figure S10. The first latent component explained the highest covariance (i.e., 5%) between 
functional topography and item-level psychopathology symptoms based on partial least 
square correlation analysis. The first component is labeled by a red circle. 
 


