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 51 
ABSTRACT: Adolescence is characterized by both maturation of brain structure and 52 
increased risk of negative outcomes from behaviors associated with impulsive decision-53 
making. One important index of impulsive choice is delay discounting (DD), which 54 
measures the tendency to prefer smaller rewards available soon over larger rewards 55 
delivered after a delay. However, it remains largely unknown how individual differences 56 
in structural brain development may be associated with impulsive choice during 57 
adolescence. Leveraging a unique large sample of 427 human youths (208 males and 58 
219 females) imaged as part of the Philadelphia Neurodevelopmental Cohort, we 59 
examined associations between delay discounting and cortical thickness within 60 
structural covariance networks. These structural networks were derived using non-61 
negative matrix factorization, an advanced multivariate technique for dimensionality 62 
reduction, and analyzed using generalized additive models with penalized splines to 63 
capture both linear and nonlinear developmental effects. We found that impulsive 64 
choice, as measured by greater discounting, was most strongly associated with 65 
diminished cortical thickness in structural brain networks that encompassed the 66 
ventromedial prefrontal cortex, orbitofrontal cortex, temporal pole, and temporoparietal 67 
junction. Furthermore, structural brain networks predicted DD above and beyond 68 
cognitive performance. Taken together, these results suggest that reduced cortical 69 
thickness in regions known to be involved in value-based decision-making is a marker 70 
of impulsive choice during the critical period of adolescence.  71 
 72 
SIGNIFICANCE: Risky behaviors during adolescence, such as initiation of substance 73 
use or reckless driving, are a major source of morbidity and mortality. In this study, we 74 
present evidence from a large sample of youths that diminished cortical thickness in 75 
specific structural brain networks is associated with impulsive choice. Notably, the 76 
strongest association between impulsive choice and brain structure was seen in regions 77 
implicated in value-based decision-making; namely, the ventromedial prefrontal and 78 
orbitofrontal cortices. Moving forward, such neuroanatomical markers of impulsivity may 79 
aid in the development of personalized interventions targeted to reduce risk of negative 80 
outcomes resulting from impulsivity during adolescence.   81 
 82 

 83 

 84 

  85 
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INTRODUCTION  86 

Adolescence is marked by an increased vulnerability to risky behaviors, such as 87 

tobacco, alcohol, and drug use, reckless driving, and unprotected sex (Eaton et al., 88 

2011). During this vulnerable period, the brain undergoes dramatic structural changes 89 

(Giedd et al., 1999; Sowell et al., 2004). Some evidence suggests that risk during 90 

adolescence is associated with differential maturation of brain regions related to reward 91 

processing (such as the orbitofrontal cortex and ventral striatum) and those necessary 92 

for cognitive control (such as the dorsolateral prefrontal cortex, dlPFC; Casey et al., 93 

2008; Van Leijenhorst et al., 2010). One of the most commonly used indices of 94 

impulsive choice is delay discounting (DD)— a behavioral measure of impulsivity where 95 

one chooses between a smaller reward delivered sooner, and a larger reward with a 96 

longer delay (Kirby and Maraković, 1995; Peters and Büchel, 2011; Kable, 2013). Delay 97 

discounting engages regions known to mature at different rates in adolescence, 98 

including dlPFC (Peters and Büchel, 2011), orbitofrontal cortex, and ventral striatum 99 

(Kable and Glimcher, 2007; Bartra et al., 2013). Increased DD has been proposed as a 100 

framework for understanding substance abuse and other risky decisions as reflecting 101 

impulsive choices of immediate rewards (Bickel et al., 2007). Indeed, studies of 102 

adolescents show that higher impulsivity, as indexed by higher discounting, is 103 

associated with increased smoking frequency (Reynolds, 2004), greater alcohol 104 

consumption (Field et al., 2007), and predicts longitudinal increase in both smoking 105 

(Audrain-McGovern et al., 2009) and alcohol use (Fernie et al., 2013).  106 

At present, it remains relatively unknown how individual differences in structural 107 

brain development may relate to DD in adolescents. Neuroanatomical studies in adults 108 
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are more numerous, but have yielded inconsistent results, perhaps due to small 109 

samples and focused region-of-interest analyses (for a review see Kable and Levy, 110 

2015). For example, it has been reported that greater DD (more impulsive choice) is 111 

associated with reduced gray matter volume in lateral prefrontal cortex (Bjork et al., 112 

2009), superior frontal gyrus (Schwartz et al., 2010), and putamen (Dombrovski et al., 113 

2012; Cho et al., 2013). Furthermore, greater DD has been associated with larger 114 

volume of the ventral striatum and posterior cingulate cortex (PCC, Schwartz et al., 115 

2010), medial prefrontal regions and anterior cingulate cortex (ACC, Cho et al., 2013), 116 

as well as prefrontal cortex (Wang et al., 2016). One study of cortical thickness (CT) in 117 

adults revealed an association between higher DD and decreased CT in both medial 118 

prefrontal cortex and the ACC (Bernhardt et al., 2014). To our knowledge, there have 119 

been no neuroanatomical studies in adolescents that specifically examine the 120 

relationship between DD and cortical thickness. Notably, findings from adults may not 121 

necessarily extend to adolescents, given the dynamic re-modeling of brain structure that 122 

occurs during this critical period (Sowell et al., 2004).  123 

Accordingly, here we investigated how individual differences in DD may be 124 

associated with differences in brain structure during adolescence. To do this, we 125 

capitalized on a large sample of 427 youths imaged as part of the Philadelphia 126 

Neurodevelopmental Cohort (Satterthwaite et al., 2014a; 2016). We delineated 127 

covariance networks of cortical thickness using a recently-developed application of non-128 

negative matrix factorization for the multivariate analysis of high-dimensional 129 

neuroimaging data (Sotiras et al., 2015; 2017). We evaluated the association between 130 

DD and CT in each network, while specifically modeling both linear and nonlinear 131 
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developmental effects using penalized splines. We hypothesized that we would find 132 

associations between DD and CT in brain regions associated with reward processing, 133 

such as the ventromedial prefrontal cortex (vmPFC; Kable and Glimcher, 2007; Bartra 134 

et al., 2013), as well as regions subserving cognitive control (e.g. dlPFC).  As described 135 

below, diminished CT in these as well as other networks was associated with impulsive 136 

choice, and predicted individual variation in DD above and beyond that explained by 137 

cognitive performance. 138 

 139 

MATERIALS AND METHODS 140 

Participants and sample construction 141 

 Participants were a subsample of 1,601 youths recruited as part of the 142 

Philadelphia Neurodevelopmental Cohort (PNC) who underwent neurocognitive 143 

assessment (Gur et al., 2010; 2012), as well as neuroimaging (Satterthwaite et al., 144 

2014a; 2016). A sub-sample of PNC participants (n = 453) completed the delay 145 

discounting (DD) task. Of those, n = 2 did not pass the quality control criteria for the task 146 

(described below). Additionally, n = 24 participants were excluded for the following 147 

reasons: health conditions that could impact brain structure (n = 19), scanning 148 

performed more than 12 months from DD testing (n = 1), inadequate structural image 149 

quality (n = 3) or missing imaging data (n = 1). The remaining n = 427 participants 150 

constituted our final sample for analysis (mean age at scanning: 17.0 ± 3.2 years, age 151 

range: 9.3–24.3 years; 48.7%, n = 208 males). 152 

 153 

Delay discounting task 154 
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 The DD task consisted of 34 self-paced questions where the participant chose 155 

between a smaller amount of money available immediately or a larger amount available 156 

after a delay. This task was modeled after the work of Senecal et al. (2012). The 157 

smaller, immediate rewards ranged between $10 and $34 and were always displayed at 158 

the top of the computer screen. The larger, delayed rewards were fixed at $25, $30, or 159 

$35, with the delays ranging between 1 and 171 days. Larger, delayed rewards were 160 

always displayed on the bottom of the screen. All rewards were hypothetical but 161 

participants were instructed to make decisions as if the choices were real. Discount 162 

rates based on hypothetical choices have shown no systematic differences from 163 

discount rates based on real rewards, in the same participants (Johnson and Bickel, 164 

2002). The set of choices was identical in content and order for all participants. The DD 165 

task was administered as part of an hour-long web-based battery of neurocognitive 166 

tests (Computerized Neurocognitive Battery, described below), on a separate day from 167 

the imaging session. The mean interval between the DD task and imaging was 0.44 168 

months with a SD of 1 month (range 0–8 months). 169 

 Discount rates from the delay discounting task were calculated assuming a 170 

hyperbolic discounting model of the form: SV = A/(1+kD), where SV is the subjective 171 

value of the delayed reward, A is amount of the delayed reward, D is the delay in days, 172 

and k is the subject-specific discount rate (Mazur, 1987). We used the fmincon 173 

optimization algorithm in MATLAB (Mathworks, Natick, MA; RRID:SCR_001622) to 174 

estimate the best-fitting k from each participant’s choice data. A higher k value indicates 175 

steeper discounting of delayed rewards and thus more impulsive choices. As the 176 
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distribution of discount rates is highly right-skewed, we used log-transformed k (log k) in 177 

all analyses. 178 

 We performed quality control to ensure that participants were not responding 179 

randomly, and verified that their responses were a function of task variables which 180 

should be relevant to the choice. Although a hyperbolic discounting model has been 181 

shown to fit discounting data better than an exponential model (Kirby and Maraković, 182 

1995), quality control was performed independently of assumptions about the shape of 183 

the discount function. Specifically, each participant’s responses were fit using a logistic 184 

regression model, with predictors including the immediate amount, delayed amount, 185 

delay, their respective squared terms, and two-way interaction terms. We assessed 186 

goodness of fit of this model using the coefficient of discrimination (Tjur, 2009), and 187 

discarded DD data from any participant who had a value of less than 0.20.  188 

 189 

Neurocognitive battery  190 

 Cognition was assessed using the University of Pennsylvania Computerized 191 

Neurocognitive Battery (Penn CNB, Gur et al., 2010; 2012) during the same session 192 

that delay discounting was evaluated. Briefly, this hour-long battery consisted of 14 193 

tests administered in a fixed order, evaluating aspects of cognition, including executive 194 

control, episodic memory, complex reasoning, social cognition, and sensorimotor and 195 

motor speed. Except for the motor tests that only measure speed, each test provides 196 

measures of both accuracy and speed. Performance on the tests for each domain is 197 

summarized as cognitive factors obtained with exploratory factor analysis with an 198 

oblique rotation (Moore et al., 2015). Prior work has demonstrated that accuracy on this 199 
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battery can be parsimoniously summarized as either one overall cognitive performance 200 

factor or three domain-specific factors, including executive function and complex 201 

reasoning combined, social cognition, and episodic memory (Moore et al., 2015). 202 

Associations between DD and factor scores for each of these dimensions were 203 

analyzed, as described below.  204 

 205 

Image acquisition and quality assurance  206 

 Image acquisition and processing are reported in detail elsewhere (Satterthwaite 207 

et al., 2014a; 2016). Briefly, all data were acquired on a single scanner (Siemens TIM 208 

Trio 3 Tesla, Erlangen, Germany; 32-channel head coil) using the same imaging 209 

sequences for all participants. Structural brain scanning was completed using a 210 

magnetization prepared, rapid acquisition gradient echo (MPRAGE) T1 weighted 211 

image with the following parameters: TR 1810 ms; TE 3.51 ms; FOV 180x240 mm; 212 

matrix 192x256; 160 slices; slice thickness/gap 1/0 mm; TI 1100 ms; flip angle 9 213 

degrees; effective voxel resolution of 0.93 x 0.93 x 1.00 mm; total acquisition time 3:28 214 

min.  215 

 216 

Image quality assurance 217 

T1 image quality was independently assessed by three expert image analysts; 218 

for full details of this procedure see Rosen et al. (2017). Briefly, prior to rating images, 219 

all three raters were trained to >85% concordance with faculty consensus rating on an 220 

independent training sample of 100 images. Each rater evaluated every raw T1 image 221 

on a 0—2 Likert scale, where unusable images were coded as “0”, usable images with 222 
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some artifact were coded as “1”, and images with none or almost no artifact were coded 223 

as “2”. All images with an average rating of 0 were excluded from analyses (n = 3); of 224 

the remaining images in the final sample n = 2 had an average manual rating of 0.67, n 225 

= 16 were rated as 1, n = 16 were rated as 1.33, n = 35 were rated as 1.67, and the 226 

remaining n = 358 had an average rating of 2. As described below, these average 227 

manual quality ratings were included in sensitivity analyses. In addition, we examined 228 

the distribution of cortical thickness values within anatomically defined regions created 229 

using a multi-atlas labeling technique (see below). For each region, we created a 230 

distribution of thickness values; subjects with a cortical thickness value >2 SD from the 231 

mean were flagged for that region. This procedure was repeated for all 98 cortical 232 

regions, and the number of flags was summed across regions; this summarized the 233 

number of regions per subject that had an outlying value. Subjects with >2.5 S.D. 234 

number of regional outliers were flagged for manual re-evaluation. Notably, this 235 

extensive post-processing QA procedure did initially identify 1 subject who failed the 236 

ANTs CT procedure. For this subject, minor parameter adjustments were made and the 237 

procedure was re-run, resulting in no subjects with major processing errors that required 238 

exclusion. Beyond this participant, there was no other manual intervention into 239 

standardized image processing procedures.  240 

 241 

Image processing and cortical thickness estimation 242 

Structural image processing for estimating cortical thickness (CT) used tools 243 

included in Advanced Normalization Tools (ANTs, Tustison et al., 2014; 244 

RRID:SCR_004757). In order to avoid registration bias and maximize sensitivity to 245 
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detect regional effects that can be impacted by registration error, a custom adolescent 246 

template and tissue priors were created. Structural images were then processed and 247 

registered to this template using the ANTs CT pipeline (Tustison et al., 2014). This 248 

procedure includes brain extraction, N4 bias field correction (Tustison et al., 2010), 249 

Atropos probabilistic tissue segmentation (Avants et al., 2011a), the top-performing SyN 250 

diffeomorphic registration method (Klein et al., 2010; Avants et al., 2011b; 251 

RRID:SCR_004757), and direct estimation of cortical thickness in volumetric space 252 

(Das et al., 2009). Large-scale evaluation studies have shown that this highly accurate 253 

procedure for estimating CT is more sensitive to individual differences over the lifespan 254 

than comparable techniques (Tustison et al., 2014). CT images were down-sampled to 255 

2 mm voxels before applying non-negative matrix factorization, but no additional 256 

smoothing was performed. 257 

 258 

Non-negative matrix factorization  259 

Cortical thickness was estimated as described above over the entire cortical 260 

surface. We sought to reduce CT in our sample into fewer dimensions, for two reasons. 261 

First, an efficient summary of CT data would allow us to evaluate only a small number of 262 

associations, rather than conduct voxel-wise inference that may be vulnerable to 263 

substantial Type I error (Eklund et al., 2016). Second, and importantly, prior work has 264 

shown that there are inherent patterns of covariance in CT (Zielinski et al., 2010; 265 

Alexander-Bloch et al., 2013; Sotiras et al., 2015; 2017), and analyzing the data 266 

according to this covariance structure may enhance interpretability. 267 
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 Accordingly, we achieved both goals by using non-negative matrix factorization 268 

(NMF) to identify structural networks where cortical thickness co-varies consistently 269 

across individuals and brain regions (Sotiras et al., 2015). NMF has previously been 270 

shown to yield more interpretable and reproducible components than other 271 

decomposition techniques such as Principal Component Analysis or Independent 272 

Component Analysis (Sotiras et al., 2015; 2017). In contrast to the other techniques, 273 

NMF only yields compact networks with positive weights, which facilitates interpretation 274 

of effects.  275 

The NMF algorithm takes as input a matrix X containing voxel-wise CT estimates 276 

(dimensions: 128,155 voxels x 427 participants), and approximates that matrix as a 277 

product of two matrices with non-negative elements: X  BC (Figure 1). The first matrix, 278 

B, is of size V x K and contains the estimated non-negative networks and their 279 

respective loadings on each of the V voxels, where K is the user-specified number of 280 

networks. The B matrix (“CT loadings”) is composed of coefficients that denote the 281 

relative contribution of each voxel to a given network. These non-negative coefficients 282 

of the decomposition by necessity represent the entirety of the brain as a subject-283 

specific addition of various parts. The second matrix, C, is of size K x N and contains 284 

subject-specific scores for each network. These subject-specific scores (“CT network 285 

scores”) indicate the contribution of each network in reconstructing the original CT map 286 

for each individual, and were evaluated for associations with DD as described below. 287 

We examined multiple NMF solutions ranging from 2 to 30 networks (in steps of 2) and 288 

calculated reconstruction error for each solution as the Frobenius norm between the CT 289 

data matrix and its NMF approximation (Sotiras et al., 2015; 2017). The optimal number 290 
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of components was chosen based on the elbow of the gradient of the reconstruction 291 

error, such that the solution is adequate to model the structure of the data without 292 

modeling random noise (Sotiras et al., 2017). Network loadings were visualized on the 293 

inflated Population-Average, Landmark-, and Surface-based (PALS) cortical surfaces 294 

(Van Essen, 2005; RRID:SCR_002099) using Caret software (Van Essen et al., 2001; 295 

RRID:SCR_006260).  296 

 297 

Regional parcellation using multi-atlas segmentation 298 

In order to demonstrate that our results are robust to methodological variation, 299 

we also derived CT estimates in anatomically-defined regions of interest. We used a 300 

top-performing multi-atlas labelling approach to parcellate the brain into anatomical 301 

regions. This procedure has proven advantages over standard single-atlas approaches 302 

and has won open analysis challenges (Wang et al., 2012).  Specifically, we used 24 303 

young adult T1 images from the OASIS dataset (Marcus et al., 2007; 304 

RRID:SCR_007385), which have been manually labeled by Neuromorphometrics, Inc. 305 

(http://Neuromorphometrics.com/; RRID:SCR_005656). These images were each 306 

registered to each participant’s T1 image again using the top-performing SyN 307 

diffeomorphic registration method included in ANTs (Klein et al., 2010; Avants et al., 308 

2011b; RRID:SCR_004757). Finally, a joint label fusion algorithm was used to 309 

synthesize the multiple warped atlas-labeled images into a final segmentation consisting 310 

of 98 gray matter regions (Wang et al., 2012). Mean thickness was calculated within 311 

each of these regions, and evaluated in group-level analyses identical to those 312 

conducted for NMF-derived networks, as described below.      313 
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 314 

Experimental design and statistical analysis  315 

To examine associations between DD and brain structure, we used a cross-316 

sectional sample of youths recruited as part of a large neurodevelopmental study. Brain 317 

development is frequently a nonlinear process (Giedd et al., 1999; Lenroot et al., 2007; 318 

Satterthwaite et al., 2014b). In order to capture both linear and nonlinear age effects, we 319 

modeled age with a penalized spline within Generalized Additive Models (GAMs; Wood, 320 

2004; 2011; Vandekar et al., 2015). In this type of model, a penalty is assessed on 321 

nonlinearity using restricted maximum likelihood in order to avoid overfitting. GAMs 322 

were implemented in the R package ‘mgcv’  323 

(https://cran.r-project.org/web/packages/mgcv/index.html; RRID:SCR_001905).  324 

 GAMs were first used to test for associations between DD and demographic 325 

variables such as age and sex. Next, we evaluated the association between DD and 326 

cognitive performance (as summarized by the overall cognitive performance factor and 327 

three domain-specific factor scores described above), while co-varying for sex and age. 328 

In both sets of analyses, DD was used as the dependent variable. Finally, univariate 329 

associations between DD and NMF-derived structural covariance networks were 330 

evaluated, with CT scores as the dependent variables and controlling for sex and age. 331 

Interactions between DD and age were evaluated but were not found to be significant, 332 

and were thus not included in the univariate models. To control multiple testing across 333 

either cognitive factors or structural covariance networks, we used the False Discovery 334 

Rate (FDR, Q<0.05; Benjamini and Hochberg, 1995). 335 
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 In order to ensure that our results were not driven by potentially confounding 336 

factors, we conducted several sensitivity analyses. First, to ensure that our results were 337 

not driven by socio-economic status (SES), non-specific neurostructural effects, data 338 

quality or general cognitive abilities, we repeated these analyses while including 339 

maternal education, total brain volume, mean image quality rating, and the overall 340 

cognitive performance factor as model covariates in separate models. Second, we 341 

repeated our analyses while excluding participants who were taking a psychotropic 342 

medication at the time of scan (n = 52) or for whom medication data was not available 343 

(n = 3) to ensure that these participants did not bias the observed results.   344 

 345 

Multivariate analyses 346 

The analyses described above examined univariate associations between each 347 

structural covariance network and DD. As a final step, we also investigated the 348 

multivariate predictive power of all cortical networks considered simultaneously, over 349 

and above that of two reduced models that included only demographics and non-neural 350 

correlates of DD (specifically, cognitive performance or maternal education).  The first 351 

full model predicted DD using all 19 NMF networks, as well as age, sex, and the 352 

cognitive factors that were significantly associated with DD. The second full model 353 

predicted DD using all 19 NMF networks, as well as demographic variables including 354 

age, sex, and maternal education. These full models were compared to the reduced 355 

models (without the CT networks) using F-tests. 356 

 357 

  358 
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RESULTS 359 

Impulsive choice is associated with reduced cognitive performance 360 

Mean discount rate in our sample was 0.073 ± 0.088. Delay discounting was not 361 

related to demographic variables including age (p = 0.387). There was a non-significant 362 

trend toward more impulsive discounting in males (p = 0.07), and this trend was most 363 

prominent at younger ages (age by sex interaction: p = 0.09). In contrast, delay 364 

discounting was significantly associated with cognitive performance: youth who had 365 

higher discount rates also tended to have lower overall cognitive performance (partial r 366 

= -0.26, p < 0.0001). Follow-up analyses with a three-factor model describing specific 367 

cognitive domains revealed that this effect was driven primarily by an association with a 368 

combined executive functioning and complex reasoning factor (partial r = -0.29, p < 369 

0.0001). Greater discounting was also associated with diminished memory accuracy 370 

(partial r = -0.20, p < 0.0001), whereas there was no significant relationship between DD 371 

and social cognition (partial r = -0.08, p = 0.10).  372 

 373 

Non-negative matrix factorization identifies structural covariance networks 374 

Next, we sought to identify structural covariance networks in CT using NMF. 375 

NMF provides a data-driven way to identify structural covariance networks, where 376 

cortical thickness varies in a consistent way across individuals. As NMF identifies 377 

structural networks at a resolution set by the user, we examined solutions ranging from 378 

2 to 30 networks (in steps of 2). As expected, reconstruction error consistently 379 

decreased as the number of networks increased. Similar to previous applications of this 380 
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method (Sotiras et al., 2015), reconstruction error stabilized at 20 networks (Figure 2). 381 

Accordingly, the 20-network solution was used for all subsequent analyses (Figure 3). 382 

As in prior work using NMF (Sotiras et al., 2017), the structural covariance 383 

networks identified were highly symmetric bilaterally. Networks included specific cortical 384 

regions that are relevant to reward processing and decision-making, such as 385 

ventromedial prefrontal cortex (vmPFC) and orbitofrontal cortex (OFC). Notably, when 386 

combined, several of the networks corresponded to aspects of functional brain 387 

networks. For example, networks 1 and 3 loaded on ACC and anterior insula, 388 

respectively, similar to the “salience network” (Seeley et al., 2007). Furthermore, 389 

specific networks defined lower-order systems, including motor (network 11) and visual 390 

(network 12) cortex. The 20-network solution also included a noise component (network 391 

17), which was subsequently excluded from all analyses, resulting in 19 networks 392 

evaluated in total. 393 

 394 

Greater delay discounting is associated with diminished cortical thickness  395 

Having identified 19 interpretable structural covariance networks using NMF, we 396 

next examined associations with DD while controlling for sex as well as linear and 397 

nonlinear age effects using penalized splines. Univariate analyses revealed that there 398 

was a significant association (after FDR correction) in eleven networks (Table 1). In 399 

each of these networks, impulsive choice, indicated by high discount rates, was 400 

associated with diminished cortical thickness. Notably, the strongest effects were found 401 

in two networks comprised of the ventromedial prefrontal cortex and orbitofrontal cortex, 402 

both regions known to be critical for reward-related decision-making. These two 403 
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networks also included parts of the temporal pole and temporoparietal junction, TPJ 404 

(networks 14 and 15; Figure 4). Other networks where DD was associated with reduced 405 

CT included the temporal poles (network 9), lateral (network 8) and posterior temporal 406 

(network 20) lobes, dorsolateral prefrontal cortex (network 18), insula (network 3), 407 

fusiform gyrus (network 7), fronto-parietal cortex (network 11), and visual cortex 408 

(network 12).  409 

 410 

Association between cortical thickness and delay discounting is independent of age-411 

related changes in cortical thickness 412 

 Having established that individual differences in DD are associated with CT, we 413 

next examined whether this effect was moderated by age. Notably, there was no 414 

significant age by DD interaction in any network (median p  = 0.77, range: 0.09—0.94). 415 

Thus, age-related changes in CT were similar in both high and low discounters, but 416 

those with higher discount rates had thinner cortex across the age range examined 417 

(Figure 5). 418 

 419 

Sensitivity analyses provide convergent results 420 

We conducted sensitivity analyses to evaluate potentially confounding variables 421 

including maternal education, total brain volume, image data quality, general cognitive 422 

abilities, and psychotropic medications. First, we examined if the results could be 423 

explained by differences in maternal education, a proxy of socioeconomic status. 424 

Discount rate was significantly associated with maternal education (partial r = -0.164, p 425 

= 0.0007), but including it in the model did not have a great impact on results. 426 
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Specifically, 7 of 11 networks found to be related to DD remained FDR-significant, 427 

including the vmPFC and OFC networks; the other 4 networks trended towards 428 

significance (pfdr < 0.067). Second, we examined the effect of total brain volume on our 429 

findings. After adding total brain volume as a covariate, 10 of 11 networks remained 430 

FDR-significant for association with DD, with the remaining network showing a trend 431 

towards FDR-significance (pfdr = 0.0762). Third, we included mean image quality rating 432 

(averaged across three expert raters) as a model covariate. Despite the fact that data 433 

quality was significantly related to discount rate (Spearman’s partial rho = -0.159, p = 434 

0.001), 7 of 11 networks continued to have an FDR-significant association after 435 

inclusion of this covariate (including the vmPFC and OFC networks), and 3 out of 11 436 

networks had FDR-corrected p-values of < 0.10. Fourth, we examined the effect of 437 

cognitive abilities, as measured by the overall cognitive performance factor. After 438 

including this variable as a covariate, 5 of 11 networks related to DD remained FDR-439 

significant, including networks spanning the vmPFC, OFC, insula, and inferior temporal 440 

lobe. Finally, we repeated this analysis after excluding 52 participants who were taking 441 

psychotropic medication at the time of scan and 3 participants for whom medication 442 

data were missing. Despite the reduced power of this smaller sample, 10 of 11 networks 443 

remained FDR-significant, with the final network showing a trend towards significance 444 

(pfdr  = 0.0503).  445 

 446 

Analyses with anatomically defined regions yield convergent results  447 

To evaluate the robustness of the relationship between DD and CT to 448 

methodological variation, we also examined associations within 98 anatomically-based 449 
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regions. Univariate analyses controlling for sex and age revealed significant negative 450 

associations between DD and CT in 24 of these regions (Figure 6). Consistent with the 451 

previously described NMF results, impulsive choice— indexed by greater discounting— 452 

was associated with diminished cortical thickness in medial frontal cortex, orbitofrontal 453 

cortex, fusiform gyrus, frontal and temporal poles, insular cortex, middle and superior 454 

temporal gyri, precentral gyrus, and occipital cortex.  455 

 456 

Covariance networks provide improved prediction of DD over demographic and 457 

cognitive data 458 

The univariate analyses described above demonstrated that reduced CT in 459 

several structural covariance networks is associated with impulsive choice. Next, we 460 

tested whether a multivariate model including all structural networks could accurately 461 

predict DD on an individual basis. Delay discounting predicted from a model of CT 462 

scores in all 19 networks, as well demographic data (age and sex), was significantly 463 

correlated with actual delay discounting behavior (r = 0.33, p < 0.0001; Figure 7). 464 

Adding CT scores to a reduced model with demographics alone improved model fit 465 

(F(405,424) = 2.37, p = 0.001); DD predicted from this reduced model with demographics 466 

only achieved a correlation of 0.097 (p = 0.043) with actual log k values.  467 

Importantly, CT data also improved prediction above and beyond that achieved 468 

by cognitive predictors: adding CT scores to a model with cognitive performance as well 469 

as demographics improved the model fit (F(403,422) = 1.63, p = 0.047). DD predicted from 470 

the reduced model with just demographics and cognition achieved a correlation of 0.31 471 

(p < 0.0001) between model-predicted and actual log k values, compared to a 472 
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correlation of 0.40 (p < 0.0001) from a complete model including CT data, cognitive 473 

data, and demographics. Furthermore, CT networks also improved prediction above 474 

and beyond that achieved by maternal education, a proxy of socioeconomic status, 475 

which was correlated with DD (F(401,420) = 1.97, p = 0.009). DD predicted from a model 476 

with demographic variables such as age, sex, and maternal education achieved a 477 

correlation of 0.19 (p < 0.0001) between predicted and actual k values, while k values 478 

estimated from the full model with CT data, demographics, and maternal education 479 

achieved a correlation of 0.34 (p < 0.0001) with actual k values. 480 

 481 

DISCUSSION  482 

We examined associations between delay discounting and cortical thickness 483 

networks in a large adolescent sample. More impulsive preferences, as indexed by 484 

higher discounting, were associated with diminished CT in multiple networks. The 485 

strongest effects were found in OFC, vmPFC, temporal pole, and the TPJ. Associations 486 

between DD and brain structure did not vary over the age range studied, and could not 487 

be explained by confounding variables. Furthermore, consideration of structural 488 

networks improved prediction of DD above and beyond demographic and cognitive 489 

variables. 490 

 491 

Structural covariance networks related to DD overlap with known functional networks  492 

Greater discounting was associated with decreased cortical thickness in multiple 493 

structural networks. Relative to previous reports of both neurofunctional and 494 

neurostructural correlates of DD (Peters and Büchel, 2011; Bernhardt et al., 2014; 495 
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Kable and Levy, 2015), the effects we observed were fairly widespread across the 496 

brain. Notably, many of the regions encompassed by these networks correspond to 497 

findings from previous studies in adults, including functional networks known to be 498 

involved in DD. As hypothesized, we found associations between DD and CT in central 499 

elements of the valuation network, namely vmPFC (Bartra et al., 2013), the cognitive 500 

control network, including dlPFC (Peters and Büchel, 2011; Stanger et al., 2013), and 501 

the prospection network, involving medial temporal cortex (Peters and Büchel, 2011). 502 

While DD and CT relationships have not previously been evaluated in adolescents, one 503 

prior study documented diminished thickness in the ACC and medial PFC in association 504 

with greater DD in adults (Bernhardt et al., 2014). In addition to hypothesized effects, 505 

we also found associations between DD and CT in motor, somatosensory, and both 506 

early and higher-order visual cortices. Notably, when these effects were evaluated 507 

jointly in a multivariate model, CT networks enhanced prediction of DD above and 508 

beyond demographic and cognitive variables. This result contributes to efforts in 509 

neuroeconomics to improve prediction of decision-making behavior using brain-based 510 

measures obtained independently of the behavior itself (Kable and Levy, 2015), and 511 

suggests that structural covariance networks may be a useful marker of impulsive 512 

choice in youth. 513 

 514 

Results converge with data from lesion and neuromodulation studies 515 

Although the negative associations between DD and CT were widespread and 516 

distributed, two structural covariance networks exhibited particularly strong associations 517 

with DD. Brain regions comprising these networks included vmPFC, OFC, temporal 518 
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pole, and the TPJ. As mentioned above, our findings in vmPFC were expected based 519 

on substantial evidence from fMRI studies that this region is implicated in DD (Kable 520 

and Glimcher, 2007; Ballard and Knutson, 2009; Bartra et al., 2013). Furthermore, 521 

activity in vmPFC when merely thinking about the future predicts DD, such that lower 522 

discounters show greater activity when thinking about the far future (Cooper et al., 523 

2013). Finally, consistent with our results, a study in adults reported that diminished CT 524 

in that region was associated with higher DD (Bernhardt et al., 2014). 525 

 Beyond the vmPFC, evidence suggests that regions including the OFC, temporal 526 

pole, and TPJ are both involved in and necessary for evaluating future outcomes in DD. 527 

First, lesion studies in patients with medial OFC damage show greater discounting of 528 

both primary and secondary rewards, compared to healthy controls and non-frontal 529 

damage patients (Sellitto et al., 2010), and this is the only region where injuries have 530 

been reported to increase discounting in humans. Notably, this relationship is dose-531 

dependent, such that larger frontal lesions are associated with steeper discounting. 532 

Second, patients with semantic dementia, a disorder characterized by anterior temporal 533 

lobe atrophy, show greater discounting than controls (Chiong et al., 2015). Third, while 534 

the TPJ has typically been implicated in social cognition and theory of mind, recent data 535 

suggests that it also plays a role in both monetary and social discounting (Strombach et 536 

al., 2015; Soutschek et al., 2016). Importantly, disrupting the TPJ in healthy adults using 537 

transcranial magnetic stimulation increases discounting (Soutschek et al., 2016). 538 

Collectively, this evidence suggests that the disruption of OFC, anterior temporal lobe, 539 

and TPJ may promote impulsive choice.   540 

 541 
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Associations with delay discounting are independent of age-related changes 542 

While we replicated prior findings of association between lower discounting and 543 

higher IQ (Shamosh and Gray, 2008) and working memory (Shamosh et al., 2008), we 544 

did not find significant associations between DD and age (Scheres et al., 2006; 545 

Steinberg et al., 2009). This may be due to differences in sample composition, including 546 

relatively less dense sampling of younger ages and use of a dimensional rather than a 547 

stratified design that compared older and younger age groups. However, the lack of 548 

observed age effect is consistent with a recent review noting that age effects on DD are 549 

inconsistent and of a relatively small effect size (Romer et al., 2017). Notably, the 550 

association between brain structure and DD was stable across the entire age range 551 

surveyed in our sample. This result is consistent with a prior study of DD in adolescents 552 

and white matter integrity assessed using diffusion imaging (Olson et al., 2009). 553 

Together, these results imply that individual differences in brain structure associated 554 

with impulsive choice do not emerge specifically during adolescence. These results may 555 

also suggest that such individual differences in brain structure may emerge early in 556 

development, consistent with literature describing the importance of structural brain 557 

development in utero, during the peri-natal period, and during early childhood 558 

(Thomason et al., 2013; Di Martino et al., 2014). While speculative, future research may 559 

reveal that individual differences in brain structure which emerge early in life may impact 560 

evolving patterns of value and cognitive control system function in adolescence which, 561 

in turn, may contribute to impulsivity during this critical period (Casey et al., 2008; Bjork 562 

et al., 2010).   563 

 564 
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Advantages of evaluating structural covariance networks in a large sample 565 

The greater spatial extent of observed significant associations between brain 566 

structure and DD compared to prior results may be due to several aspects of our study. 567 

First, the large sample size afforded greater statistical power, and thus greater 568 

sensitivity, to detect effects in multiple networks. While the effect sizes of these 569 

associations were small, research documenting inflation of effect sizes in small studies 570 

suggests that our results are more likely to be an accurate reflection of the true effect 571 

size than data from modest samples (Button et al., 2013). Second, structural covariance 572 

networks defined by NMF provided a parsimonious summary of the high-dimensional 573 

imaging data. In contrast to anatomic atlases based on sulcal folding patterns, NMF 574 

identifies structural networks based on patterns of covariance in the data itself. This 575 

concise summary of the data limited multiple comparisons: we only evaluated 19 576 

networks in our analyses, in contrast to the hundreds of thousands of voxels typically 577 

surveyed in mass-univariate voxel-based morphometry studies. This allowed us to use 578 

a rigorous FDR correction for all comparisons, rather than cluster-based inference that 579 

may produce substantial Type I error rates in many common implementations (Eklund 580 

et al., 2016).  581 

  582 

Limitations 583 

Certain limitations of this study should be noted. First, the observed effects were 584 

independent of age, suggesting that differences in brain structure associated with 585 

impulsive choice may emerge earlier than the examined age range. Future 586 

investigations should consider longitudinal designs including early childhood to precisely 587 
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capture the emergence of these effects. Second, we used hypothetical instead of real 588 

rewards in the DD task. However, prior studies have yielded similar results in both 589 

behavioral (Johnson and Bickel, 2002) and functional neuroimaging paradigms (Bickel 590 

et al., 2009). Third, we cannot completely rule out potential confounding variables which 591 

may be correlated with DD. Previous studies have described associations between CT 592 

and SES in adolescence (Mackey et al., 2015), though importantly our results remained 593 

largely unaffected after controlling for maternal education, a proxy of SES.  Fourth, 594 

while the ANTs DiReCT method of quantifying CT has been shown as highly accurate 595 

and more discriminative than comparable techniques in large-scale evaluation studies 596 

(Tustison et al., 2014), it does not allow high-resolution voxel-wise analyses or provide 597 

information (such as surface area) regarding potentially important subcortical structures.  598 

 599 

Conclusions and future directions 600 

Understanding impulsive choice in adolescence is important because impulsivity 601 

is associated with a host of risky behaviors and outcomes, such as tobacco use 602 

(Reynolds, 2004), alcohol use (Fernie et al., 2013), obesity (Fields et al., 2013), and 603 

early sexual initiation (Khurana et al., 2012), which lead to substantial morbidity and 604 

mortality during adolescence. Leveraging a large developmental sample and advanced 605 

analytics, we found that individual variability in brain structure explains differences in DD 606 

in adolescence. Taken together, our results indicate that higher DD in youth is 607 

associated with reduced cortical thickness in multiple networks, including those known 608 

to be essential for valuation. These results emphasize that risky behaviors in 609 

adolescents should be considered in the context of individual differences of structural 610 
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brain networks that are present early in life. Moving forward, such brain-based 611 

measures could potentially be used as biomarkers to identify youth at particularly high 612 

risk for negative outcomes. Future studies should evaluate associations between DD, 613 

brain structure, and psychopathology. Such efforts could potentially aid in stratifying 614 

youth within targeted clinical trials aiming to reduce impulsivity and risk-taking behaviors 615 

during this critical period.  616 

 617 

 618 

 619 

 620 

 621 

 622 
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TABLES 924 
 925 
Table 1. Association between delay discounting and NMF-derived structural 926 
covariance networks. β (unstandardized regression coefficient), SE (β’s standard 927 
error), t (t-value for testing β against 0, dfs = 423), p-value, and FDR-corrected p-values 928 
are obtained from separate general additive models run for each network. In this model, 929 
discount rate (log k) predicts cortical thickness scores, controlling for age (fit as a 930 
penalized spline) and sex. As an estimate of the linear effect size, r is the partial 931 
Pearson’s correlation coefficient between discount rate and CT scores in each network, 932 
while adjusting for linear age, quadratic age, and sex.  933 
 934 
FIGURES 935 
 936 
Figure 1. Schematic of non-negative matrix factorization and example data for 937 
each matrix. The X matrix represents the cortical thickness data (columns) for all 938 
subjects (rows); the CT map shows example CT data from one participant, and 939 
corresponds to a column in the X matrix. The B matrix represents estimated networks 940 
(columns) and their loadings on each voxel (rows); the example map shows loadings 941 
from one network, and corresponds to a column in the B matrix. The C matrix provides 942 
the subject-specific weights (columns) for each network (rows); the histogram shows CT 943 
scores in a single network, and corresponds to a row in the C matrix. Matrix sizes are 944 
shown with following dimensions: V = number of cortical thickness voxels, N = number 945 
of participants; K = number of networks.  946 
 947 
Figure 2. NMF reconstruction error identifies 20 cortical networks as the optimal 948 
resolution for cortical thickness data. Plot of reconstruction error gradient for NMF at 949 
multiple resolutions; the gradient is the difference in reconstruction error as the NMF 950 
solution increases by 2 networks. Blue circle indicates selected NMF solution of 20 951 
networks.  952 
 953 
Figure 3. Structural covariance networks delineated by NMF. Visualization of 954 
structural covariance networks from the 20-network NMF solution. The spatial 955 
distribution of each network is indicated by loadings at each voxel in arbitrary units (from 956 
B matrix in NMF factorization); warmer colors represent higher loadings. For each 957 
network, we show one view that best captures the main area(s) of coverage. 958 
Approximate anatomical coverage of each structural covariance network: 1) medial 959 
prefrontal cortex and cingulate cortex; 2) medial temporal lobe; 3) insula; 4) medial 960 
posterior parietal cortex, including the precuneus; 5) temporo-occipital cortex; 6) 961 
dorsolateral prefrontal cortex (dlPFC); 7) fusiform gyrus; 8) lateral temporal lobe; 9) 962 
lateral temporal lobe and temporal pole; 10) posterior cingulate cortex and temporal 963 
lobe; 11) frontal and parietal cortex, including primary motor and somatosensory 964 
cortices; 12) occipital cortex; 13) medial temporal cortex, anterior cingulate cortex 965 
(ACC) and posterior cingulate cortex (PCC); 14) orbitofrontal cortex (OFC), frontal and 966 
temporal poles; 15) ventromedial prefrontal cortex (vmPFC), inferior temporal lobe, 967 
auditory cortex, temporoparietal junction (TPJ); 16) dorsal OFC; 17) the dura matter, a 968 
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noise component that was not evaluated further; 18) dlPFC; 19) angular and 969 
supramarginal gyri; 20) posterior inferior temporal lobe.  970 
 971 
 Figure 4. Higher discounting is associated with diminished cortical thickness in 972 
frontal, temporal, and parietal areas. Regions of FDR-significant association between 973 
log k and structural covariance networks. The composite network visualization was 974 
obtained by assigning each voxel to the network which has the highest loading for that 975 
voxel (from the B matrix), across all 19 networks. Maximal effects were observed in 976 
Networks 14 and 15, which included orbitofrontal cortex and ventromedial prefrontal 977 
cortex. Scatterplots for log k-CT association in these networks are shown, while 978 
adjusting for model covariates. Gray envelope represents the 95% confidence interval. 979 
 980 
 Figure 5. Association between cortical thickness and delay discounting is 981 
independent of age. Scatterplots for relationship between age and CT in networks 14 982 
and 15, separated by top (Q4) and bottom (Q1) quartiles of log k. The Q4 quartile group 983 
contains participants with the most impulsive preferences. For each quartile, the age-CT 984 
relationship is shown after adjusting for model covariates, and includes the 95% 985 
confidence intervals (gray envelopes).   986 
 987 
Figure 6. Higher discounting is associated with diminished regional cortical 988 
thickness in frontal and temporal regions. FDR-significant associations between log 989 
k and CT estimated in anatomically-defined regions. Significant regions include the 990 
following: left frontal pole (1); left medial orbital gyrus (2); left orbital part of the inferior 991 
frontal gyrus (3); left posterior orbital gyrus (4); left precentral gyrus (5); left central 992 
operculum (6); left temporal pole (7); left superior temporal gyrus (8); left superior frontal 993 
gyrus, medial segment (9); left medial frontal cortex (10); left gyrus rectus (11); left 994 
fusiform gyrus (12); left planum polare (13); right frontal pole (14); right medial orbital 995 
gyrus (15); right central operculum (16); right temporal pole (17); right superior temporal 996 
gyrus (18); middle temporal gyrus (19); right inferior occipital gyrus (20); right precentral 997 
gyrus, medial segment (21); right cuneus (22); right posterior insula (23); right planum 998 
temporale (24). 999 
 1000 
Figure 7. CT data from structural covariance networks predicts delay discounting. 1001 
Scatterplot for relationship between actual log k values and predicted log k from 1002 
multivariate CT prediction. Multivariate prediction is based on CT scores from all 1003 
structural covariance networks plus demographic variables: sex and age. Scatterplots 1004 
include line of best fit for this association with a 95% confidence interval (gray 1005 
envelope). 1006 
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Network ß SE t p FDR-p r 

Ntwk 1 -0.649 0.3946 -1.64 0.101 0.137 -0.080 

Ntwk 2 -0.0138 0.4217 -0.03 0.974 0.974 0.002 

Ntwk 3 -1.5868 0.5606 -2.83 0.005 0.019 -0.136 

Ntwk 4 -0.4337 0.6414 -0.68 0.499 0.527 -0.033 

Ntwk 5 -0.9959 0.4811 -2.07 0.039 0.062 -0.100 

Ntwk 6 -0.8277 0.5337 -1.55 0.122 0.154 -0.075 

Ntwk 7 -1.1428 0.4359 -2.62 0.009 0.024 -0.126 

Ntwk 8 -1.1598 0.4562 -2.54 0.011 0.024 -0.123 

Ntwk 9 -0.7926 0.3580 -2.21 0.027 0.047 -0.110 

Ntwk 10 -0.3748 0.3055 -1.23 0.221 0.262 -0.060 

Ntwk 11 -1.1527 0.4669 -2.47 0.014 0.027 -0.119 

Ntwk 12 -1.5839 0.6164 -2.57 0.011 0.024 -0.124 

Ntwk 13 -1.173 0.4283 -2.74 0.006 0.02 -0.132 

Ntwk 14 -2.019 0.4241 -4.76 <0.0001 <0.0001 -0.225 

Ntwk 15 -1.257 0.3036 -4.14 <0.0001 <0.0001 -0.200 

Ntwk 16 -0.4404 0.4371 -1.01 0.314 0.351 -0.050 

Ntwk 18 -1.252 0.4305 -2.91 0.004 0.018 -0.140 

Ntwk 19 -0.7172 0.3713 -1.93 0.054 0.079 -0.094 

Ntwk 20 -0.8778 0.3014 -2.91 0.004 0.018 -0.140  
















