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Neurocognitive and functional heterogeneity in depressed
youth
Erica B. Baller 1, Antonia N. Kaczkurkin 1,2, Aristeidis Sotiras 3,4,5, Azeez Adebimpe 1, Danielle S. Bassett 1,6,7,8,9,10,11,
Monica E. Calkins1,12, Ganesh B. Chand3,5, Zaixu Cui 1, Raquel E. Gur1,3,9,12, Ruben C. Gur1,3,12, Kristin A. Linn 13, Tyler M. Moore 1,12,
David R. Roalf1,12, Erdem Varol3,5, Daniel H. Wolf1,5,12, Cedric H. Xia1, Christos Davatzikos3,5 and Theodore D. Satterthwaite 1,5,12

Depression is a common psychiatric illness that often begins in youth, and is sometimes associated with cognitive deficits.
However, there is significant variability in cognitive dysfunction, likely reflecting biological heterogeneity. We sought to identify
neurocognitive subtypes and their neurofunctional signatures in a large cross-sectional sample of depressed youth. Participants
were drawn from the Philadelphia Neurodevelopmental Cohort, including 712 youth with a lifetime history of a major depressive
episode and 712 typically developing (TD) youth matched on age and sex. A subset (MDD n= 368, TD n= 200) also completed
neuroimaging. Cognition was assessed with the Penn Computerized Neurocognitive Battery. A recently developed semi-supervised
machine learning algorithm was used to delineate neurocognitive subtypes. Subtypes were evaluated for differences in both
clinical psychopathology and brain activation during an n-back working memory fMRI task. We identified three neurocognitive
subtypes in the depressed group. Subtype 1 was high-performing (high accuracy, moderate speed), Subtype 2 was cognitively
impaired (low accuracy, slow speed), and Subtype 3 was impulsive (low accuracy, fast speed). While subtypes did not differ in
clinical psychopathology, they diverged in their activation profiles in regions critical for executive function, which mirrored
differences in cognition. Taken together, these data suggest disparate mechanisms of cognitive vulnerability and resilience in
depressed youth, which may inform the identification of biomarkers for prognosis and treatment response.
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INTRODUCTION
Depressive disorders are common, and are consistently ranked
among the leading causes of disability world-wide [1, 2]. Major
depressive disorder (MDD) is often difficult to treat, with one-
third of patients remaining symptomatic despite treatment
[3, 4]. Depression frequently starts in adolescence, with a 3–5%
prevalence of MDD in youth [5, 6]. Like adults, there is significant
heterogeneity in response to treatment in youth with MDD
[7, 8]. The high variability in treatment response suggests that
MDD is a heterogeneous illness, with multiple pathophysiologic
pathways that converge on a similar clinical phenotype [9–12].
However, the Diagnostic and Statistical Manual of Mental Health
Disorders continues to rely solely on clinical symptom classifica-
tion [13].
Although mood symptoms define MDD, deficits in cognition are

consistently reported in studies of depressed youth [14–16]. There
is also substantial cognitive heterogeneity in depression among
youth; some experience profound mood symptoms with cognitive
resilience, whereas others demonstrate marked cognitive impair-
ment [17, 18]. Early studies suggest that cognition may have

prognostic value as well. A large longitudinal cohort study
demonstrated that baseline neuropsychological profiles best
predicted functional outcomes in depressed youth, even surpass-
ing prediction from baseline mood symptoms alone [19].
Neurocognitive limitations have also been found to negatively
impact recovery from MDD [20].
In particular among cognitive domains, executive function

undergoes protracted development during adolescence, a
period that coincides with increased vulnerability to mood
disorders [21–23]. Networks that subserve executive functioning
have emerged as important targets in the study of youth
depression. However, the few neuroimaging studies that have
evaluated cognitive control in depressed youth have yielded
mixed results. Whereas some studies have shown less prefrontal
cortex activation in depressed youth as compared to healthy
controls [24, 25], other studies have shown greater activation
[26, 27]. Of note, none of these studies characterized or evaluated
cognitive heterogeneity, which may account for conflicting
findings. Given the high degree of cognitive heterogeneity in
depression and the important relationship between cognitive
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function and functional outcome, we sought to identify neuro-
cognitive subtypes in youths with a history of depression.
Machine learning tools are increasingly used for uncovering

more biologically homogenous subtypes within heterogeneous
conditions like MDD [28]. In this study, we used a recently
developed semi-supervised machine learning algorithm called
Heterogeneity through Discriminative Analysis (HYDRA) [29, 30].
We then evaluated the cognitively defined subgroups on
independent measures that were not used in the subtype
identification process, including clinical symptoms and brain
activation during an n-back working memory task [31]. We
selected the n-back because it reliably recruits brain networks that
are relevant for cognitive control, are developmentally sensitive,
and implicated in mood disorders [32–35]. We predicted that we
would identify cognitive subtypes that had distinct neural
signatures that would provide information beyond the clinical
symptomatology of MDD.

METHODS
Participants
The Philadelphia Neurodevelopmental Cohort (PNC), funded by
the National Institute of Mental Health Grand Opportunity (GO)
mechanism of the American Recovery and Reinvestment Act, was
designed to characterize clinical and neurobehavioral phenotypes
of genotyped youths. As previously described in two dedicated
publications, a total of 9498 participants aged 8–22 years received
cognitive assessment and clinical phenotyping, and a subset of
1601 youths also completed neuroimaging as part of the PNC
[36, 37]. We excluded participants with missing data or those with
medical disorders that could impact brain function. Assessment of
lifetime psychopathology was conducted using GOASSESS, a
structured screening interview based on a modified version of the
K-SADS [38]. Using this instrument, 712 youth met screening
criteria for a lifetime history of a major depressive episode as
defined by DSM-IV-TR, and 2310 were typically developing (TD)
youth with no psychiatric diagnosis [39]. The proportion
of depressed youth in this sample is consistent with the general
population [40]. We refer to youths with a history of a major
depressive episode as depressed youth (DY). Given the extensive
literature documenting the effects of age and sex on brain
development, and the fact that youths with a lifetime history of
MDD were more likely to be older and female, we selected a
sample of TD youths that were matched to the DY on age and sex.
This matching procedure was implemented in R using the
“MatchIt” package, and yielded a final sample of 712 DYs and
712 TDs (Table 1). A subset of these youth (TD= 200, DY= 168;
Table 1) also completed the n-back working memory task during
functional magnetic resonance imaging (fMRI) and passed strict
quality control criteria [41]. Our multistep matching procedure, as
detailed in the Supplementary Material, ensured that the TD and
MDD group were demographically matched, while preferentially
including TDs who had completed neuroimaging. The institutional
review boards of both the University of Pennsylvania and the
Children’s Hospital of Philadelphia approved all study procedures.

Measures of clinical psychopathology
As in prior work, to provide a dimensional summary of the diverse
clinical data for all participants, we used a confirmatory bifactor
analysis to model four orthogonal dimensions of psychopathology
(anxious-misery, psychosis, externalizing, and fear) plus a general
factor, overall psychopathology [29, 41, 42]. To avoid analytic
circularity, our factor analysis excluded all items from the
depression section of the interview that were used as part of
inclusion criteria for the DY group (see Supplementary Material).
As the depression group was identified based on a lifetime history
of depression irrespective of current mood state, but mood state
may impact cognitive performance, participants completed the

State-Trait Anxiety Inventory (STAI) during the neuroimaging
session. Previous work has shown that the STAI assesses broad
anxious-misery spectrum symptoms, including both anxiety and
depression, rather than anxiety specifically [43–45].

Cognitive assessment
Cognition was assessed using the University of Pennsylvania
Computerized Neurocognitive Battery (CNB) [46]. Twenty-six
measures obtained from 14 neurocognitive tests of performance
were assessed (12 for accuracy, 14 for speed). Domains included
executive functioning (three tests), episodic memory (three tests),
social cognition (three tests), complex reasoning (three tests), and
sensorimotor speed (two tests) as detailed in the Supplementary
Material. Verbal intelligence was estimated with the Wide Range
Achievement Test, 4th Edition reading subscale with total subscale
scores reported as T-scores (mean= 100, SD= 15) [47].

Parsing cognitive heterogeneity with semi-supervised machine
learning
To identify cognitive subtypes among our sample of DY, we used a
semi-supervised machine learning tool: HYDRA [29, 30]. HYDRA
compares a reference group (e.g., controls) to a target group (e.g.,
patients) to identify k subtypes (clusters) within the target group
[30]. In contrast to fully supervised learning techniques, which
cannot distinguish between subtypes of patients, HYDRA simulta-
neously performs classification and clustering (Fig. 1A). Unlike
unsupervised clustering techniques (such as k-means or commu-
nity detection), the semi-supervised algorithm clusters the
differences between the two groups, rather than clustering the
groups themselves, thereby parsing phenotypic heterogeneity of
underlying neurobiological processes. Rather than coercing
participant data points into a single common discriminative
pattern, HYDRA allows for the separation of distinct groups
distinguished by multiple decision boundaries. The result is a data-
driven approach to identifying subtypes of DY that can be further
evaluated on independently measured clinical and imaging
characteristics.
HYDRA was used to define cognitive subtypes using the 26

accuracy and speed measures from the cognitive battery. Given
known developmental and sex differences in cognition, both age
and sex were included as covariates in HYDRA. Running HYDRA on

Table 1. Sample demographics for the whole group (A) as well as for
the imaging subsample (B).

Typically
developing

Depressed P

(A) Demographics of whole group

n 712 712

% White 64 55 0.001

% Female 67 67 1.00

Maternal education
(mean [sd])

14.93 [2.52] 14.12 [2.29] <0.001

Age (mean [sd]) 16.21 [2.91] 16.13 [2.90] 0.94

(B) Demographics of imaging subsample

n 200 168

% White 61 46.4 <0.001

% Female 59 64 0.34

Maternal education
(mean [sd])

14.93 [2.58] 13.98 [2.36] <0.001

Age (mean [sd]) 16.49 [2.84] 16.87 [2.20] 0.57

Typically developing and depressed youth were matched on age and sex
prior to subtyping.
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the cognitive measures (as opposed to the imaging measures)
allowed us to leverage the large sample size of the cognitive
dataset, while using the imaging measure as an independent data
type not used in clustering. Consistent with prior studies using this
technique, we derived multiple clustering solutions requesting
two to ten clusters in order to obtain a range of possible solutions
[29, 30]. The adjusted Rand index (ARI) was calculated using
tenfold cross-validation to evaluate the stability of each solution;
the solution with the highest ARI value was selected for
subsequent analyses. Permutation testing was used to statistically
evaluate the stability of observed ARI values in comparison to a
null distribution (see Supplementary Material). Clinical symptoma-
tology and imaging data were not used for clustering, allowing
them to serve as independent validators of the subtypes.

Image acquisition and processing
Task paradigm, image acquisition, and preprocessing methods are
as previously detailed [41] and described in the Supplementary
Material. A fractal version of the n-back task was used to probe
working memory function. As in previous studies, we selected the
2-back versus 0-back contrast as the primary contrast of interest
because it robustly indexes working memory load [32, 41, 48]. The
mean percent signal change on the primary contrast of interest (2-
back vs. 0-back) was extracted from 21 a priori regions of interest
(ROIs) within the executive system defined in a previously
published study (Supplementary Fig. 1) [32]. As prior, behavioral
performance during the fMRI task was summarized using the
signal detection measure d′ [49, 50].

Group-level statistical analyses
Having identified subtypes of DY, we sought to understand the
characteristics of these subtypes. As our subtypes were defined
using cognitive performance data, we first sought to describe the
cognitive profiles of each subtype. Notably, statistical testing of
cognitive performance between subtypes was not performed; as
the cognitive data were used in the clustering procedure,
subtypes differed in cognitive performance by construction. In
contrast, clinical symptomatology and neuroimaging were inde-
pendent data types that were not used in the clustering
procedure, and thus were appropriate for statistical testing.
Accordingly, as a first step we evaluated the clinical profiles of
subtypes and controls. Finally, we evaluated whether subtypes
displayed differential brain activity in the n-back working memory
task within the 21 executive system ROIs.
For all analyses, we used a general linear model to test how well

subtypes predicted the outcome of interest (clinical or imaging

measures), where subtype was modeled as a factor. When
evaluating differences in activation during the n-back task, we
included mean in-scanner motion as an additional covariate to
control for the potentially confounding effects of motion on image
quality. An omnibus ANOVA testing for group differences was
corrected for multiple comparisons by controlling the false
discovery rate (FDR, Q < 0.05). For measures that passed FDR
correction, we then conducted pairwise post hoc tests to
determine which subtypes significantly differed from each other;
these post hoc tests were corrected for multiple comparisons using
the Tukey method. Age-by-sex, age-by-group, and n-back motion-
by-group interactions in the ROIs were evaluated separately, but
were not significant (Pfdr > 0.05) and not evaluated further.
To conclude our study, we further evaluated between-subtype

differences in resting-state functional connectivity (see Supple-
mentary Material). Last, we performed sensitivity analyses exclud-
ing participants who were taking psychoactive medications at the
time of the clinical assessment. Given the known effects
psychoactive substances can have on mood, cognition, and brain
activity, we sought to ensure that our results were not driven by
medication effects [51, 52]. Throughout, effect sizes are reported
using the Cohen’s d statistic.

RESULTS
Of the ten possible clustering solutions generated by HYDRA, a
well-defined peak at k= 3 emerged (ARI= 0.39, permutation-
based Pfdr= 0.011), suggesting the presence of three distinct
neurocognitive subtypes of DY (Fig. 1B and Supplementary Fig. 2).
Each subtype had a similar number of participants (Subtype 1: n=
264; Subtype 2: n= 237; Subtype 3: n= 211). As an initial step, we
evaluated the demographics of the neurocognitive subtypes. As
expected, the subtypes did not differ in age or sex. However,
Subtype 2 had a lower percentage of white patients and lower
levels of maternal education. While significant, this difference was
relatively modest: on average, mothers had some college
education, and differed at most by ~1.5 years (Subtype 1 vs.
Subtype 2).

Subtypes show distinct cognitive profiles
We next characterized the subtypes based on their overall
cognitive accuracy and speed (Fig. 2A). Across all accuracy
domains, Subtype 1 consistently outperformed both other
depressed subtypes as well as TDs (Fig. 2B). Large effect sizes
were noted (Subtype 1 vs. Subtype 2, Cohen’s d= 1.58; Subtype 1
vs. Subtype 3, Cohen’s d= 1.49; Supplementary Table 1). In

Fig. 1 Heterogeneity through Discriminative Analysis (HYDRA) algorithm and subtype selection. A HYDRA is a semi-supervised machine
learning algorithm that reveals homogenous subtypes within a clinical group by maximizing subtype-specific margins between patient
subtypes and controls, while adjusting for covariates. B The stability of the clustering solution after cross-validation was evaluated over a
resolution range of 2–10 clusters (2–6 shown here), and was quantified by the adjusted rand index (ARI). The maximum ARI was seen with
three subtypes.
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contrast, when cognitive speed was evaluated, Subtype 1
performed similarly to TDs (Cohen’s d=−0.11), with faster speed
than Subtype 2 (Cohen’s d= 0.97) and slower speed than Subtype
3 (Cohen’s d=−0.93; Fig. 2C). Effect sizes for individual measures
of speed reflected a similar pattern (Supplementary Table 2). Of
note, these effect sizes are likely inflated given that cognitive data
were used for clustering, thus guaranteeing differences between
subtypes on these measures.
Overall, Subtype 1 was a high-performing subset of depressed

participants, who were able to efficiently maximize the trade-off
between accuracy and speed. Accordingly, we call Subtype 1
“High-performing.” In contrast to the high-performing Subtype
1, Subtype 2 showed globally impaired cognition, with the
lowest accuracy and slowest speed of all subtypes; we call
Subtype 2 “Impaired.” Finally, Subtype 3 had poor accuracy
performance but fast speed, suggesting that Subtype 3 was
impulsive, and was unable to accurately balance the competing
demands of accuracy and speed. As such, we named this final
subtype “Impulsive.”

Clinical symptoms are similar across cognitive subtypes
Next, we evaluated differences in the clinical symptom profiles of
the subtypes, using dimensions of psychopathology defined using
factor analysis. Notably, this independent clinical data were not
used in the clustering process. Omnibus testing revealed between
group differences in the domains of anxious-misery (F3,1419= 75.3,
Pfdr < 0.0001), externalizing behavior (F3,1419= 34.6, Pfdr < 0.0001),
fear (F3,1419= 23.9, Pfdr < 0.0001), and overall psychopathology
(F3,1419= 345.7, Pfdr < 0.0001). As expected, all subtypes had higher
psychopathology compared to TDs across these dimensions,
which largely drove the ANOVA results. The psychosis factor did
not differ across TDs and DY subtypes.
Despite such clear differences from controls, there were very

few significant differences in clinical symptoms between the
subtypes. Across the clinical measures evaluated, the subtypes
only differed on the fear dimension (Impaired Subtype 2 > High-
performing Subtype 1, T(1419)=−4.7, P < 0.0001, d=−0.39;
Impaired Subtype 2 > Impulsive Subtype 3, T(1419)= 4.48, P <
0.0001, d= 0.40; see Supplementary Tables 3 and 4). High-
performing Subtype 1 also had slightly more anxious-misery
symptoms than Impaired Subtype 2 with a small effect size (T
(1419)= 2.8, P= 0.03; d= 0.24). Factor analysis with all item-
level symptom questions (including the depression items) was
performed for comparison and was remarkably consistent
(Supplementary Table 5). Similarly, there were no differences
between the neurocognitive subtypes in state or trait anxiety
(Supplementary Tables 6 and 7), indicating that the neurocog-
nitive subtypes did not simply reflect the current burden of
clinical symptoms.

Cognitive subtypes display distinct patterns of activation during a
working memory task
Next, we tested the hypothesis that neurocognitive subtypes
reflected distinct neural profiles. To do this, we evaluated
activation during the n-back working memory task for the
subsample of participants who completed imaging (High-
performing Subtype 1: n= 68; Impaired Subtype 2: n= 53;
Impulsive Subtype 3: n= 47; TD= 200). Specifically, we examined
the signal change in 21 executive system ROIs defined a priori
with an omnibus ANOVA. Of these 21 regions, six showed
significant differences between groups (Pfdr < 0.05; Fig. 3A),
including the left anterior dorsolateral prefrontal cortex (F3,363=
4.20, Pfdr= 0.0427), anterior cingulate (F3,363= 3.58, Pfdr= 0.0496),
left dorsal frontal cortex (F3,363= 3.92, Pfdr= 0.0427), right
precuneus (F3,363= 4.65, Pfdr= 0.0427), left precuneus (F3,363=
3.97, Pfdr= 0.0427), and right crus II (F3,363= 3.82, Pfdr= 0.0427).
Five regions mapped onto well-known cortical networks: the
frontoparietal network (left anterior dorsolateral prefrontal cortex,
bilateral precuneus) and the cingulo-opercular network (dorsal
anterior cingulate and dorsal frontal cortex).
Post hoc analyses revealed that the greatest number of

differences were observed between High-performing Subtype 1
and Impaired Subtype 2, although Subtype 1 and 3 also differed in
several regions (Table 2 and Fig. 3B). Specifically, subtype-by-ROI
post hoc analyses confirmed that Subtype 1 had higher activation
magnitude than Subtypes 2 and 3 in all six regions, with moderate
effect sizes for all regions. Subtype 1 had higher activation
magnitude than Subtype 3 in right crus II and left dorsal frontal
cortex with moderate effect sizes. There were no pairwise
differences between Impaired Subtype 2 and Impulsive Subtype
3 (Table 2 and Supplementary Table 8). In-scanner behavioral
performance reflected this pattern as well, with Impaired Subtype
2 having the lowest mean d’ score, followed by Impulsive Subtype
3, TD, and High-performing Subtype 1 (Supplementary Fig. 3). In
sum, neurocognitive subtypes appear to have neural signatures
that in part reflect in-scanner cognitive performance, despite the
similar clinical symptomatology of these subtypes.
In contrast to our n-back results, our analyses of resting-state

functional connectivity did not demonstrate statistically significant
differences between subtypes. This suggests that specific task
probes (like the n-back working memory task used in our study)
may be more sensitive to differences between cognitive
subtypes of DY.

Sensitivity analyses in medication-free participants provide
convergent results
Finally, we performed sensitivity analyses that excluded partici-
pants (n= 308) who were treated with psychoactive medications
at the time of study. In the remaining participants (n= 1116),

Fig. 2 Subtypes revealed by HYDRA differ in their neurocognitive profiles. A Three neurocognitive signatures emerged in depressed youth:
High-performing Subtype 1 had preserved cognition, with high accuracy and speed; Impaired Subtype 2 had low accuracy and speed;
Impulsive Subtype 3 had high speed but low accuracy. Patterns were largely consistent for all measures of accuracy (B) and speed (C).
Horizontal dashed lines reflect the mean. Error bars reflect standard error of the mean. HYDRA Heterogeneity through Discriminative Analysis,
ABF abstraction/mental flexibility, ATT attention, WM working memory, VMEM verbal memory, FMEM face memory, SMEM spatial memory,
LAN language/verbal reasoning, NVR nonverbal reasoning, SPA spatial reasoning, EID emotion recognition, EDI emotion discrimination, ADI
age discrimination, MOT motor, SM sensorimotor.
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cognitive profiles were virtually identical to the main analysis that
considered the full group (Supplementary Fig. 4). Similar to the full
group, clinical differences between groups were isolated to higher
levels of fear in Impaired Subtype 2 (Supplementary Tables 9 and
10); no differences in state or trait anxiety were observed
(Supplementary Tables 11 and 12). Finally, additional ROI showed
significant differences between subtypes in the medication-free
subsample, despite reduced statistical power. Specifically, in
addition to the six executive regions that differed among groups
in the full sample, the right crus I and left parietal cortex also
displayed significant differences in activation (Pfdr= 0.046 for
both; Supplementary Tables 13 and 14).

DISCUSSION
Using a recently developed semi-supervised machine learning
algorithm and a large sample of youth with a history of
depression, we identified three distinct neurocognitive subtypes
of depression. Subtype 1 (High-performing) had globally

preserved cognition, and outperformed the TD youth on all
domains. Subtype 2 had globally impaired cognition, while
Subtype 3 was impulsive, sacrificing accuracy for speed. The
activation profiles of each subtype during the n-back task
generally reflected their neurocognitive signatures. This concor-
dance between cognitive and neuroimaging results suggest that
our data-driven approach identified biologically relevant subtypes.
Importantly, these subtypes were not clearly distinguishable
based on their clinical symptoms, with the exception of small
differences in the fear domain. The significantly more robust
differences in quantitative cognitive and neural measures are
relevant given that psychiatric illnesses and treatment recom-
mendations are currently based solely on observed clinical
symptoms. Overall, our study highlights both the important
heterogeneity of cognitive dysfunction in depression, and the
broader promise of machine learning for parsing heterogeneity in
psychiatric disorders.
Although subtypes were defined using a cognitive battery

administered out of the scanner, we were able to evaluate
differences between them using independent fMRI data not used
in clustering. The subset of regions that showed differences
between subtypes were located within the frontoparietal (dorso-
lateral prefrontal cortex, precuneus) and cingulo-opercular net-
works (dorsal anterior cingulate, dorsal frontal cortex), which are
of particular developmental relevance. The frontoparietal network
balances cognitive flexibility with cognitive control, both within
and between separate distributed networks [53, 54]. Throughout
healthy adolescent brain development, there is increased
connectivity within the frontoparietal network, and the brain
spends progressively more time in a frontoparietal-dominant state
[55]. Dysfunctional development of this network is a risk factor for
psychopathology [41]. Brain imaging studies in adults with
affective disorders show abnormalities in frontoparietal network
activity as well [56]. Regions within the cingulo-opercular network,
which regulates salience and inhibitory control, also showed
differences between the subtypes. TD adolescent brains show
progressive strengthening of the cingulo-opercular network,
reflecting the ability to process salient information and to engage
in impulse control when selecting behaviors. Abnormal function-
ing of the cingulo-opercular network has been associated with
anhedonia in youth as well as attention-deficit hyperactivity
disorder [57–59]. In our study, youths with MDD with preserved
cognition had consistently higher activation in several frontopar-
ietal and cingulo-opercular regions even as compared to TD
youth. Both the Impaired and Impulsive groups had lower activity

Table 2. Post hoc pairwise contrasts for regions where differential
activation during the n-back task were found.

Pairwise contrasts for n-back activation

P Cohen’s d

Subtype 1 vs. Subtype 2

Right crus II 0.031 0.54

Left anterior DLPFC 0.017 0.58

Dorsal anterior cingulate 0.031 0.53

Left dorsal frontal 0.022 0.54

Left precuneus 0.028 0.59

Right precuneus 0.045 0.49

Subtype 1 vs. Subtype 3

Right crus II 0.036 0.50

Left dorsal frontal 0.031 0.52

Subtype 2 vs. Subtype 3

NS

Pairwise contrasts are reported as P values, and were adjusted via the
Tukey method. Effect sizes are reported as Cohen’s d.

Fig. 3 Neurocognitive subtypes differ in activation of executive regions during an n-back working memory paradigm. A Group
differences (Pfdr < 0.05) in n-back activation between subtypes were present in six functionally defined regions of interest, which were defined
a priori in prior published work [32]. See Supplementary Fig. 1 for all twenty-one regions of interest. B Group differences were driven by a
consistent pattern across regions, with greater activation in High-performing Subtype 1 and TDs than in Impaired Subtype 2 or Impulsive
Subtype 3. Error bars reflect standard error of the mean.
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in these regions, suggesting that failure to effectively recruit these
networks can result in distinct cognitive deficits.
Given the differences in reaction time between Subtypes 2 and

3, we expected to see the groups differ more during the imaging
task. Although Subtype 2 generally had numerically lower mean
percent signal change than Subtype 3, we did not find statistically
significant differences when we directly compared Subtypes 2 and
3. As the main difference between these groups lies in the domain
of impulsivity, which is not directly measured in the n-back, the n-
back task might be less suited to demonstrate neural differences
between these two groups. We hypothesize that tasks that test
impulsivity and response inhibition specifically (such as a Go/No-
go task) may better highlight the differences between these two
subgroups.
Despite differences in cognition and neural activity in the

neurocognitive subtypes, the subtypes had generally similar
clinical profiles, indicating that the cognitive and neural differ-
ences observed between subtypes did not merely reflect
differences in clinical status. Although Subtype 2 had higher fear
scores than both Subtypes 1 and 3, the effect sizes of these
differences were small. This pattern of results aligns with data
suggesting that patients with similar symptomatic presentations
may have divergent cognitive deficits, prognosis, and response to
treatment [60]. Furthermore, this finding aligns with results from a
previous meta-analysis in adults with MDD that was unable to find
reliable subtypes based on symptoms alone [61].
This study adds new insights to the growing body of research

that uses machine learning to understand heterogeneity in
psychiatry [62]. Previous studies have primarily used either
unsupervised or supervised machine learning algorithms, both
of which have limitations [28, 58]. Unsupervised machine learning
algorithms allow subjects to be clustered into subtypes, but do
not account for important data like clinical diagnosis. Subtypes
from unsupervised methods typically include both cases and
controls, which is less clinically useful. Alternatively, it is possible
to use unsupervised methods on patients alone. However, this
approach fails to identify features that differentiate patients from
controls, which are likely to be of the greatest biological relevance.
In contrast, supervised machine learning algorithms can be used
to directly differentiate controls and patients. However, supervised
algorithms require the group label to be provided, and thus
cannot assess heterogeneity. Our study overcomes these limita-
tions by using a semi-supervised method that simultaneously
performs classification and clustering. In this process, we identified
subtypes of DY using features that also discriminated clusters from
controls.
Machine learning analyses of neuroimaging data are becoming

increasingly popular, but there are inherent difficulties in relying
solely on imaging to define subtypes. Neuroimaging scans are
expensive to obtain and as such, generating large datasets can be
challenging [63]. Youth imaging studies are even more challen-
ging, especially due to reduced data quality resulting from in-
scanner motion [36, 64]. In our study, we were able to leverage a
much larger dataset by evaluating cognitive data with HYDRA, and
were subsequently able to link cognitive subtypes to patterns of
brain activation. Understanding heterogeneity in cognitive per-
formance—and using neuroimaging as an external validation—
provides an alternative approach to defining biotypes.
Two limitations should be noted. First, we evaluated a cross-

sectional sample, precluding estimates of within-individual
change that are critical for studying neurodevelopment. Our
study was also limited by an assessment that evaluated only a
lifetime history of a major depressive episode, rather than
diagnosis at the time of study participation. However, state
measures of anxious-misery were not different between subtypes,
suggesting that there is a low likelihood that current affective
state drove the observed between-subtype differences. In
addition, in sensitivity analyses, which excluded youth currently

taking psychoactive medications, our findings across all clinical
and neuroimaging studies remained robust.
These limitations notwithstanding, our results suggest several

clear next steps. First, moving forward, it will be important to link
cognitive heterogeneity in depression to disease progression and
functional outcomes in youth in longitudinal studies. Second,
understanding how heterogeneous cognitive and neural deficits
moderate treatment response is a critical next step. Finally,
these data could help inform next-generation personalized
neuromodulatory therapies that are tailored to the deficits present
in an individual patient [65].
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