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A B S T R A C T

Data quality is increasingly recognized as one of the most important confounding factors in brain imaging
research. It is particularly important for studies of brain development, where age is systematically related to in-
scanner motion and data quality. Prior work has demonstrated that in-scanner head motion biases estimates of
structural neuroimaging measures. However, objective measures of data quality are not available for most
structural brain images. Here we sought to identify quantitative measures of data quality for T1-weighted vol-
umes, describe how these measures relate to cortical thickness, and delineate how this in turn may bias inference
regarding associations with age in youth. Three highly-trained raters provided manual ratings of 1840 raw T1-
weighted volumes. These images included a training set of 1065 images from Philadelphia Neuro-
developmental Cohort (PNC), a test set of 533 images from the PNC, as well as an external test set of 242 adults
acquired on a different scanner. Manual ratings were compared to automated quality measures provided by the
Preprocessed Connectomes Project's Quality Assurance Protocol (QAP), as well as FreeSurfer's Euler number,
which summarizes the topological complexity of the reconstructed cortical surface. Results revealed that the Euler
number was consistently correlated with manual ratings across samples. Furthermore, the Euler number could be
used to identify images scored “unusable” by human raters with a high degree of accuracy (AUC: 0.98–0.99), and
out-performed proxy measures from functional timeseries acquired in the same scanning session. The Euler
number also was significantly related to cortical thickness in a regionally heterogeneous pattern that was
consistent across datasets and replicated prior results. Finally, data quality both inflated and obscured associations
with age during adolescence. Taken together, these results indicate that reliable measures of data quality can be
automatically derived from T1-weighted volumes, and that failing to control for data quality can systematically
bias the results of studies of brain maturation.
Introduction

In-scanner motion and other artifacts are increasingly appreciated as
a source of bias in neuroimaging research. In-scanner motion reduces
image quality, and is also related to subject characteristics of interest,
including participant age (Power et al., 2012; Satterthwaite et al., 2012).
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As such, it has the potential to systematically confound inference, espe-
cially in studies of lifespan development (Zuo et al., 2017). While motion
has long been a well-described methodological obstacle in medical im-
aging (Bellon et al., 1986; Smith and Nayak, 2010), and a known
confound for task-related fMRI (Friston et al., 1996), it has recently
attracted additional scrutiny. Following reports that even small amounts
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Table 1
Demographic information of the training and validation datasets.

Study N % Female Age Mean Age SD

Training 1065 51 14.90 3.70
Testing 1 533 44 15.10 3.68
Testing 2 242 48 41.36 16.99
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of in-scanner motion can bias studies of functional connectivity (Power
et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012) there has
been a proliferation of recent studies that have documented the impact of
data quality on other imaging modalities, including T1-weighted neu-
roimaging of brain structure (Alexander-Bloch et al., 2016; Pardoe et al.,
2016; Reuter et al., 2015; Savalia et al., 2017).

Following initial work to assess motion's impact on structural images
(Atkinson et al., 1997), much subsequent work has addressed structural
image quality issues driven by scanner and platform-related variation
(Chen et al., 2014; Magnotta and Friedman, 2006, p. 2; Styner et al.,
2002; Woodard and Carley-Spencer, 2006). However, several published
studies have used unique attributes of T1-weighted images to quantify
image quality. Specifically, Mortamet et al. (2009) introduced a quality
index (Qi) that accurately identified unusable volumes (AUC¼ 0.93)
collected as part of the Alzheimer's Disease Neuroimaging Initiative.
Furthermore, Pizarro et al. (2016)developed statistics based on specific
artifacts such as eye motion, ringing and tissue contrast. Combined in a
multivariate approach, these statistics classified unusable volumes with a
classification accuracy of 80%. However, these studies examined neither
how quality indices related to measures of brain structure, nor how
quantitative indices of data quality might be used to account for biases in
group level analyses. This is particularly relevant given that measures of
brain structure such as cortical thickness are frequently used as putative
biomarkers in research on development, aging, and a myriad of neuro-
psychiatric diseases.

Research using functional timeseries has typically summarized mo-
tion via the “framewise displacement” calculated from timeseries
realignment parameters (Power et al., 2012; Satterthwaite et al., 2012;
Van Dijk et al., 2012). However, most structural imaging sequences do
not provide a ready estimate of participant motion during acquisition. A
variety of motion-tracking systems have recently become widely avail-
able for use in structural MRI, including in-bore optical systems as well as
approaches using the MRI scanner itself to track motion, allowing for
motion to be directly quantified in a manner akin to functional imaging
time series (Zaitsev et al., 2015). Reuter et al. (2015) used the
vNav-MPRAGE sequence (Tisdall et al., 2012), which simultaneously
acquires a T1-weighted volume and performs motion tracking with the
MRI scanner, to demonstrate in 12 healthy adults that motion during the
T1 sequence was associated with spurious alterations of cortical thick-
ness and cortical volume. Tisdall et al. (2016) demonstrated that using
this motion information prospectively could substantially reduce the
deleterious effects of motion on both image quality and subsequent
morphometry.

Despite the clear importance of such work, the vast majority of T1-
weighted imaging sequences acquired to date lack any motion-tracking
or motion-correction technology, and thus cannot derive a quantitative
assessment of motion. While current commonly-used processing pipe-
lines (including CCS, DPABI, and HCP pipelines, Marcus et al., 2013; Xu
et al., 2015; Yan et al., 2016) provide a range of measures of data quality
for functional timeseries, validated quantitative measures of data quality
are not typically produced for the T1 volume. Accordingly, three
important recent studies used motion during a functional imaging
sequence acquired during the same scanning session as a proxy of in-
scanner motion during the structural scan (Alexander-Bloch et al.,
2016; Pardoe et al., 2016; Savalia et al., 2017). This approach is based on
the observation that participant motion tends to be highly correlated
across acquisitions: individuals with high motion in one sequence tend to
have high motion in other sequences (Pardoe et al., 2016; Yan et al.,
2013). These three studies demonstrated that higher motion during a
functional sequence acquired in the same session is associated with
cortical thickness, even in those scans which passed manual quality
assurance procedures (Alexander-Bloch et al., 2016; Pardoe et al., 2016;
Savalia et al., 2017). Furthermore, Savalia et al. (2017) demonstrated
that unaccounted-for motion artifact inflated the apparent effects of
aging. While motion during a functional sequence is an opportune proxy
for motion during a structural scan, it nonetheless has several limitations.
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First, it requires that a functional scan was acquired, which may not be
possible due to subject factors, time restrictions, or study design. Second,
the ecological validity of the proxy is likely to vary with ordering effects,
amount of time between scans, as well as other uncontrolled variables
such as patient comfort.

In this study, we sought to identify quantitative measures of data
quality that could be derived from the T1 volume alone. Measures of data
quality were primarily provided by the Preprocessed Connectomes Pro-
ject's Quality Assurance Protocol (QAP); the Euler number provided by
FreeSurfer was also evaluated. We investigated the degree to which these
quantitative measures could be used to identify unusable images, and
compared them to proxy measures of data quality provided by functional
sequences. Furthermore, we described how quantitative metrics of image
quality related to cortical thickness, and potentially confound associa-
tions with age. Throughout, we leveraged the large sample provided by
the Philadelphia Neurodevelopmental Cohort (PNC), as well as an in-
dependent sample of adults imaged on a different scanner. As described
below, we found that measures derived from the T1-weighted volume
provide useful measures of image quality.

Methods

Approach overview

Our overall goal was to evaluate quantitative measures of image
quality directly from structural MRI volumes. This process included
several discrete tasks. First, all image analysts underwent rigorous
training, and then independently rated all images. Second, we evaluated
quantitative measures of image quality to determine which aligned best
with manual ratings. Third, we used these quantitative measures to
identify images that were unusable; we refer to this as the “inclusion”
model. Fourth, we compared this approach to proxy measures estimated
from motion during functional time series acquired during the same
session. Fifth, we examined how quantitative measures of image quality
related to cortical thickness as measured by the popular FreeSurfer
platform (Fischl and Dale, 2000). Sixth and finally, we examined how
data quality might bias inference regarding associations with age in
samples of youth.

Participants

We included a total of 1840 images across two studies that used
different scanners (Table 1). This included 1598 images from the PNC
(Satterthwaite et al., 2014) as well as an additional 242 images from a
study acquired on a different scanner (Roalf et al., 2015). Specifically,
1065 PNC images were used for training, and 533 were used during
testing. In order to maintain a similar distribution of age, sex, and manual
image quality rating across the training and testing samples of the PNC,
we used the ‘caret’ package in R (Kuhn et al., 2016). The data from the
second study were used only as an external test dataset. This second
cohort was comprised of adults, and thus not matched on demographic
details (see Table 1).

Image acquisition

All imaging data from the PNC were acquired on the same 3T Tim
Trio scanner with a 32-channel head coil (Siemens: Erlangen, Germany)
as previously described (Satterthwaite et al., 2014). Structural images
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were acquired using a magnetization-prepared, rapid-acquisition
gradient-echo (MPRAGE) T1-weighted sequence (TR¼ 1810ms;
TE¼ 3.51ms; T1¼ 1100ms; FoV¼ 180� 240mm; flip angle¼ 9�;
GRAPPA factor¼ 2; BW/pixel¼ 130 Hz; resolution:
0.94 mm� 0.94 mm x 1.0mm; Acquisition time¼ 3:28). Prior to scan-
ning, in order to acclimate participants to the MRI environment and to
help subjects learn to remain still during the actual scanning session, a
mock scanning session was conducted using a decommissioned MRI
scanner and head coil. Mock scanning was accompanied by acoustic re-
cordings of the noise produced by gradient coils for each scanning pulse
sequence. In the external test set, T1-weighted volumes were collected on
a different 3T Tim Trio scanner, using an 8-channel head coil with the
following acquisition parameters: TR¼ 1680ms; TE¼ 4.67ms;
T1¼ 1100ms; FoV¼ 180� 240mm; flip angle¼ 15�; bandwith/-
pixel¼ 150Hz; resolution: 0.94 mm� 0.94 mm x 1.0mm; acquisition
time¼ 5:00 (Roalf et al., 2015).
Image processing

Cortical reconstruction of the T1 image was performed for all subjects
using FreeSurfer version 5.3 (Fischl, 2012). FreeSurfer includes regis-
tration to a template, intensity normalization, gray and white matter
segmentation, and tessellation of the gray/CSF and white/gray matter
boundaries (Dale et al., 1999); cortical surfaces are inflated and
normalized to a template via a spherical registration. Cortical thickness is
measured as the shortest distance between the pial and the white matter
tessellated surfaces (Dale et al., 1999). The cortex was then parcellated
into 40 regions (Desikan et al., 2006) and cortical thickness was averaged
across parcels to obtain regional cortical thickness estimates without any
manual correction.
Table 2
Quantitative image quality metrics.

Quantitative Metric Abbreviation Citation

Signal-to-noise ratio SNR Magnotta and Friedman,
2006

Contrast-to-noise ratio CNR Magnotta and Friedman,
2006

Foreground-to-background energy
ratio

FBER NA

Quality index 1 Qi1 Mortamet et al., 2009
Image smoothness FWHM Friedman et al., 2006
Entropy focus criterion EFC Atkinson et al., 1997
Euler number Euler Dale et al., 1999
Manual rating procedure and rater training

Similar to prior work (Reuter et al., 2015; Savalia et al., 2017), all
images were rated on quality using a 0–2 ordinal scale. Initial pilot
testing indicated that using systems with more quality classes (i.e., 4 or 5
rating classes) resulted in substantially diminished inter-rater reliability
even among experts. In the 3-class framework used, a “0” denoted images
that suffer from gross artifacts and were considered unusable. In contrast,
a “2” was assigned to images free from visible artifact. The intermediate
“1” category was used for images with some artifact, but which still
would be considered usable.

A rigorous process of training was used to ensure high inter-rater
reliability (see Fig. 1). First, anchors and exemplars for the three qual-
ity classes were agreed upon through consensus of 5 experts, including a
Fig. 1. Training protocol for manual raters. There were 4 phases of training. Phase 1: 5 neur
images were used to establish rating anchors, which were then used for Phase 2. Phase 2: Two ex
Phase 3: Three new raters were trained on the 100 images used in Phase 2, until the raters achie
images across the PNC and the external test dataset (see Table 1).
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board-certified neuroradiologist (JES), an MR physicist (MAE), a cogni-
tive neuroscientist (DRR), an experienced image analyst (AR), and a
neuropsychiatrist (TDS). Next, two of these experts (DRR and TDS)
created a larger training sample by rating 100 images independently.
Initial concordance was 93%; discrepancies were resolved through
consensus, thus yielding a set of 100 images that were used to train three
image analysts (KS, PV, JB) who served as the raters for the complete
dataset. These three analysts were trained to >85% agreement in this
dataset. This required two rounds of blind rating: during the first round,
agreement with the expert consensus was 82% (JB), 57% (PV), and 82%
(KS). Following further training, each rater re-rated this set of 100 images
(presented in a different order, without identifiers), and achieved an
accuracy of 91% (JB), 86% (PV), and 94% (KS). Having met reliability
benchmarks, these three raters then independently rated all 1840 images
across datasets.

Rater concordance was evaluated using twomeasures: the weighted-κ
statistic and polychoric correlations. These two measures provide com-
plementary information: while the weighted-κ assesses absolute rating
agreement, the polychoric correlation assesses the ordering of the rat-
ings. Variation amongst raters were assessed using a repeated measures
ANOVA model. The relationship between manual rating and age was
evaluated using partial Spearman's correlations; sex differences were
evaluated using a Wilcoxon signed-rank test.
Quantitative metrics of structural image quality

We evaluated the utility of an array of quantitative imaging measures
included in QAP (see Table 2) (Shehzad et al., 2015). QAP version 1.0.3
utilized FMRIB's Automated Segmentation Tool (FAST, Zhang et al.,
2001) for image segmentation, which enables definition and quantifi-
cation of quality metrics using an image's gray matter, white matter, and
background voxels. Steps were taken to avoid the inclusion of neck and
oimaging experts reviewed 20 PNC images selected to have various levels of artifact. These
perts (TDS & DRR) rated 100 images. 100% concordance was achieved through consensus.
ved 85% concordance after two rounds. Phase 4: All 3 trained raters manually rated 1840



A.F.G. Rosen et al. NeuroImage 169 (2018) 407–418
face tissue within the image's background for the calculation of all
background metrics as previously described (Mortamet et al., 2009). In
addition to the measures included in QAP, we also calculated image
kurtosis and skewness (Joanes and Gill, 1998) for each tissue class and
background using tools included in the ‘ANTsR’ (Avants et al., 2016) and
‘psych’ (Revelle, 2017) packages in R; these measures have been inte-
grated into recently-released updates to QAP. Finally, we considered a
quality measure produced by the FreeSurfer pipeline: the Euler number
(Dale et al., 1999) which is a measure of the topological complexity of the
reconstructed cortical surface as calculated by the sum of the vertices and
faces subtracted by the number of faces. Two geometric shapes with
identical Euler numbers are homotopic, FreeSurfer seeks to maximize the
Euler characteristic to a value of 2, to obtain an identical Euler number
with that of a flat surface. Euler number is calculated separately for each
hemisphere; we averaged across both hemispheres here to produce one
value per subject.

In order to visualize the relationship between quantitative measures
and manual quality rating, we plotted the mean value for each image
quality metric versus the mean manual quality rating. Furthermore, we
also calculated partial Spearman's correlations between the average
manual rating and quantitative metrics (while controlling for age, age
squared, and sex). For these plots and subsequent analyses, we collapsed
any image with an average rating less than 1 into the ‘0’ bin due to the
small cell size of these bins.

Identifying unusable images: the “inclusion” model

A common step in sample construction is to remove images where
raw image data quality is so low that the images are considered unusable.
We sought to use the quantitative measures of data quality described
above to automatically identify unusable images. To do so, we con-
structed a logistic regression model for each quality metric, where the
outcome was a binarized image quality score (i.e., images with a quality
score of “0” versus all others). The primary measure of model perfor-
mance was area under the curve (AUC); accuracy, sensitivity, and spec-
ificity were also calculated.

As described below (see Results), a single variable performed quite
well in this task. However, in order to ascertain if using additional
measures of data quality would aid in classification, we also evaluated
multivariate models. Model training began with a simple mass-univariate
model and then added features to create a multivariate model in a
forward-stepwise manner. The first (base) variable in the multivariate
model was defined as the variable with the best performing receiver
operator curve (ROC) as measured by area under the curve (AUC) in the
mass-univariate analyses conducted in the training sample. Additional
measures were added separately to this base model, and the AUC was re-
calculated. The best performing feature was selected, and this process
was repeated. At each step, in order to determine whether an additional
model parameter provided significantly improved classification, we
calculated the Delong statistic, which tests for a significant increase in
AUC between models (DeLong et al., 1988). Model building was termi-
nated when no significant increase in AUC was found.

After construction of the model in the training set, the classification
threshold criterion from the training set was applied to the first (internal)
testing dataset as well as the second (external) test set. The same outcome
measures (AUC, accuracy, sensitivity, specificity) were then calculated
separately for each test sample. Performance using the threshold defined
in the training set was compared with outcomes when the classification
thresholds were calculated separately for each dataset.

Comparison to motion in functional scans acquired in the same session

.
Three recent reports demonstrated that motion in functional se-

quences acquired during the same scanning session can function as an
effective proxy for structural image quality (Alexander-Bloch et al., 2016;
410
Pardoe et al., 2016; Savalia et al., 2017). Accordingly, we next compared
our quantitative measure of structural image quality to head motion
estimated from functional sequences. This was only conducted in the
PNC sample. These additional sequences included a pseudo-continuous
arterial spin labeled (PCASL) perfusion scan, two task fMRI scans
(tfMRI 1 & tfMRI 2), and one resting functional connectivity scan
(rsfMRI) (Satterthwaite et al., 2014, 2016). As sequences acquired at the
end of the scanning session are more likely to be missing, we examined
motion during each functional sequence, which was summarized as the
Frame Displacement (FD), estimated using the average root mean square
displacement as calculated by FSL's MCFLIRT (Jenkinson et al., 2002).
Next, we evaluated attrition over the course of the scanning session, and
plotted the proportion of missing scans for each sequence, separated by
the manual quality rating of the T1 image. Finally, we evaluated the
degree to which motion during the functional sequence could identify
unusable images using a logistic regression model as described above. In
order to ensure that the same sample was considered by each model, this
analysis was conducted in a sample of 1275 PNC subjects that spanned
both training and testing samples with complete data across all
sequences.

Relationship of quantitative measures of quality to cortical thickness

As described below, Results revealed that a single metric – the Euler
number – was sufficient for identifying unusable images with a high
degree of accuracy. Next, we examined associations between this quan-
titative measure of data quality and cortical thickness in the images that
were considered usable (according to their manual rating). Specifically,
we used linear regression to examine the association between the Euler
number and regional estimates of cortical thickness derived from the
FreeSurfer pipeline. While all images completed reconstruction success-
fully and were initially included in this analysis, in a sensitivity analysis
we additionally considered the quality of reconstructed FreeSurfer
cortical surfaces. To do this, we performed detailed manual inspection of
all cortical reconstructions of images drawn from the PNC. A small per-
centage of images were identified as having lower-quality reconstruction
quality; these participants were removed and analyses were re-run to
ensure that they were not driving observed associations. For all analyses,
cortical thickness was the outcome and Euler number was the predictor
of interest; age, age squared, and sex were included in these regression
models as covariates. Multiple comparisons across regions were
accounted for using the False Discovery Rate (FDR; q< 0.05).

Impact of data quality on associations with age

The analysis described above revealed substantial relationships be-
tween data quality and cortical thickness. As a final step, we examined
how data quality might bias tests examining associations with age.
Accordingly, using the training and testing samples from the PNC, we
conducted mediation analyses to determine whether quantitative esti-
mates of data quality (e.g., the Euler number) might mediate the
apparent relationship between age and brain structure. Our test statistic
for this analysis was the Sobel's z-score (Sobel, 1982), which was calcu-
lated for each cortical region. Sobel's z-score estimation was imple-
mented in the ‘bda’ package in R (Wang, 2015). Multiple comparisons
were accounted for using FDR as above (q< 0.05).

Results

Highly trained manual raters achieve good concordance

Across datasets, image quality was relatively high, with a minority of
images being considered unusable (Fig. 2A–C). Although there were
significant differences among raters (training: F[2, 3198]¼ 39.65,
p< .0001; internal testing: F[2, 1599]¼ 17.74, p< .0001; external
testing: F[2837]¼ 3.50, p< .05), post-hoc review found that raters never



Fig. 2. Results of manual ratings. A-C: Frequency of average manual rating for the training, internal testing, and external testing datasets. D-F: The pairwise weighted-κ between each
rater in dataset was moderate and consistent across datasets. G-I: The pairwise polychoric correlation for each rater in all of the datasets was high.
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disagreed by more than one quality class. Weighted kappa statistics
indicated that all three raters achieved good concordance (Fig. 2B) in
both the training (mean weighted-κ¼ 0.64), internal testing (mean
weighted-κ ¼ 0.68), and external testing datasets (mean weighted-
κ ¼ 0.81). Additionally, polychoric correlations (Fig. 2G–I), indicated
very high correlation between raters in all datasets (training: mean
r¼ 0.93; internal testing: mean r¼ 0.94; external testing datasets mean
r¼ 0.94).
Manual quality ratings vary by age

While controlling for age, no sex differences were present in manual
rating in any of the three datasets. However, in both developmental
samples from the PNC, younger age was associated with lower quality
Fig. 3. Manual quality rating varies by age. Image quality improves with age during adoles
quality declines with aging over the adult lifespan in the external test dataset (C). In A-C, dark
significance values are calculated using partial Spearman's correlations while controlling for se
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(training: ρ¼ 0.14, p< .0001, Fig. 3A; internal testing: ρ¼ 0.12, p< .01,
Fig. 3B). In contrast, among the older adults from the external testing
dataset, greater age was associated with lower quality (ρ¼�0.15,
p< .05, Fig. 3C).
Quantitative measures of image quality align heterogeneously with manual
rating

Next, we evaluated how quantitative measures of data quality related
to the average quality rating across three raters. Putative quality mea-
sures displayed heterogeneous associations with manual quality ratings,
both across measures and sometimes across datasets (Fig. 4). The Euler
number had the strongest association with manual rating across all three
datasets. Furthermore, while the relationship was consistent across
cence in both training (A) and internal testing samples (B) using PNC data, whereas data
line represents a linear fit; shaded envelope represents 95% confidence intervals; reported
x.



Fig. 4. Quantitative metrics of image quality show heterogeneous alignment with manual ratings. A: The standardized mean (þ/� S.E.M.) for each quantitative metric is displayed
by average manual rating class. B: Partial Spearman correlation coefficients between average manual quality rating and the T1 derived quantitative metrics; covariates included sex, age,
and age squared. Across all datasets, Euler number showed the strongest association with manual quality ratings.
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datasets for some measures (e.g., Euler number, Qi1), other measures
were less consistent. For example, measures such as SNR, CNR, and FBER
had only weak associations in the two PNC datasets, but had stronger
associations in the external testing dataset that was acquired on a
different scanner.
Euler number successfully identifies unusable images

Next, we used the quantitative metrics to build an “inclusion” model
that discriminated unusable images (rated “0”) from usable images (rated
“1” or “2”). We began by measuring the classification capacity of each
quantitative metric to identify a usable image (Fig. 5A–C). Notably, the
Euler number proved to be the most predictive feature across datasets
(training: AUC¼ 0.99; internal testing: AUC¼ 0.98; external testing:
AUC¼ 0.99; Fig. 5D–F). The Euler number value used for the classifica-
tion threshold criteria were calculated using the training sample (accu-
racy¼ 0.94), and then applied to each test set. In the internal test set,
accuracy remained quite high (accuracy¼ 0.92), but performance was
somewhat lower in the external test set (accuracy¼ 0.76). Lower accu-
racy in the external test set was the result of very high sensitivity, but
lower specificity (Table 3). As expected, the Euler number showed
similar relationships to age as the manual quality ratings; sex additionally
displayed significant differences (see Supplementary Fig. 1).

Notably, when the classification threshold criteria were allowed to
vary by dataset, accuracy was quite high across all samples (range:
0.93–0.98; see Table 4). However, even when the threshold was varied
by dataset, the inclusionmodel using the Euler number tended to bemore
sensitive than specific, with more false positives than false negatives. In
this case, false positives were images flagged as unusable which were
rated as usable by the manual raters. Post-hoc examination of these
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images revealed that, although they were not flagged as unusable by
raters, these images did have a lower manual quality rating than those
images which were marked as usable by both raters and the logistic
model (training: n¼ 64 false positives, W¼ 35286, p< 0.1; internal
testing: n¼ 40 false positives, W¼ 12452, p< .01; external testing:
n¼ 57 false positives, W¼ 6952, p< .0001).
Limits of proxy measures from functional sequences

Based on prior reports that motion in functional sequences acquired
in the same scanning session can provide a useful proxy of structural
image quality, we next compared such proxy measures to those derived
directly from the structural image. Specifically, we compared the Euler
number to frame displacement from the four functional scans acquired as
part of the PNC. As expected, motion within each sequence increased as
the scanning session progressed (Fig. 6A). Many participants did not
complete all functional sequences, with more missing data for sequences
acquired later in the session. Perhaps more importantly, attrition over the
scanning session scaled directly with the data quality on the structural
scan, such that those with lower structural image quality were less likely
to have completed the subsequent functional sequences (Fig. 6B).
Furthermore, measures of motion during the functional sequences were
less able to successfully identify unusable image compared to the Euler
number (Fig. 6C).
Quantitative estimates of data quality are related to cortical thickness

Having demonstrated that the Euler number can effectively identify
unusable images (rated “0”), we next examined if this measure was
related to cortical thickness in images that had raw images which were



Fig. 5. Inclusion model to identify unusable images. A-C: Logistic models in training (A), internal testing (B), and external testing (C) datasets were used to evaluate the ability of each
quantitative measure of image quality to discriminate usable (rated 1–2) and unusable (rated 0) images. Area under the curve (AUC) was used to summarize model performance. In all
datasets, the Euler number was the best-performing metric; adding additional metrics to the Euler number did not improve model performance. D-F: Receiver Operator Characteristic
(ROC) curves for the Euler number in each dataset.
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considered usable (rated “1” or “2”). To do this, we conducted mass-
univariate linear regression analyses evaluating the relationship be-
tween data quality (as summarized by the mean Euler number) with
regional cortical thickness estimated using FreeSurfer. Across all three
samples, highly consistent effects were observed. Overall, there was an
FDR-corrected relationship with data quality in 53% of cortical regions
(Fig. 7A) in the training dataset, 44% of regions in the internal testing
dataset (Fig. 7B), and 39% of regions in the external testing dataset
(Fig. 7C). However, the directionality of this association was regionally
heterogeneous. In regions including the dorsolateral prefrontal cortex,
superior parietal cortex, and lateral temporal cortex, higher data quality
was associated with thicker cortex. In contrast, in occipital and posterior
cingulate cortex, higher data quality was associated with thinner cortex.
Sensitivity analyses which removed the 1.5% of samples identified in
Table 3
Inclusion model performance, using classification threshold criterion derived from training
sample.

Study Threshold Sensitivity Specificity Accuracy

Training �217 0.97 0.94 0.94
Internal Testing �217 1 0.93 0.92
External Testing �217 1 0.76 0.76
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post-processing QA as having lower-quality cortical reconstructions (see
Supplementary Table 1) provided highly convergent results (Supple-
mentary Fig. 2). Highly similar patterns were seen in unthresholded
maps, when no statistical correction for multiple testing was applied
(Supplementary Fig. 3).

Data quality systematically biases associations with age in youth

The above results demonstrate that the Euler number aligns with
manual ratings, is related to age, and is related to cortical thickness even
among images considered usable. As a final step, we evaluated the degree
to which data quality might bias inference regarding cross-sectional as-
sociations with age. Accordingly, we conducted mediation analyses to
examine the degree to which data quality might mediate the relationship
Table 4
Inclusion model performance, using classification threshold criterion calculated separately
for each dataset.

Study Threshold Sensitivity Specificity Accuracy

Training �217 0.97 0.94 0.94
Internal Testing �224.5 1 0.93 0.93
External Testing �380 1 0.98 0.98



Fig. 6. Limits of motion from functional scans as a proxy measure of T1 volume quality. A: Mean in-scanner motion during functional sequences acquired as part of the PNC
increased over the course of the scanning session. Sequences are plotted in order of acquisition after the T1 scan; time from the T1 scan is reported in minutes: seconds within each bar. B:
Individuals with lower-quality T1 images had differential attrition over the course of the of the scanning session. Thus, individuals with a lower-quality T1-images were less likely to
complete the functional sequences which were subsequently acquired. Attrition scaled with quality of the T1 image. C: In participants for whom complete data was available (n¼ 1275),
motion estimated from the functional sequence did not perform as well as the Euler number in identifying unusable images (rated “0”).
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between age and brain structure (see schematics in Fig. 8A & B). As ex-
pected given regionally heterogeneous effects of data quality on cortical
thickness, data quality had a bidirectional impact on associations with
age (Fig. 8C & D). For most regions (shown in red), the relationship with
data quality resulted in a masking of age effects, with observed associa-
tions with age becoming more significant when controlling for data
quality. This reflects the fact that lower data quality leads the thick cortex
of younger participants to appear thinner, reducing estimates of thinning
with age. In contrast, in several regions (shown in blue) including the
posterior cingulate cortex and occipital cortex, data quality had the
opposite effect, and inflated apparent age effects. Results were highly
concordant in the training and internal testing datasets.

Discussion

In this paper, we demonstrate that a single quality measure derived
from a T1-weighted volume – the Euler number – effectively re-
capitulates results from visual inspection with high accuracy. Further-
more, we demonstrate that image-based measures of data quality show
heterogenous regional associations with cortical thickness, and that data
quality systematically biases inference regarding development in youth.

Manual raters can achieve a high level of concordance in a large-scale
sample

It is increasingly recognized that data quality may be the primary
Fig. 7. Quantitative measure of image quality is associated with cortical thickness. In usa
related to the Euler number in a regionally heterogeneous pattern. Higher data quality was as
thinner cortex in occipital and posterior cingulate cortex. This pattern was present across all d
cortical thickness was the outcome and Euler number was the predictor of interest; covariates in
False Discovery Rate (q< 0.05).
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confound in brain imaging studies of individual difference, lifespan
development, or clinical populations (Ciric et al., 2017; Power et al.,
2015). In-scanner motion is usually the single biggest determinant of
data quality, especially in individuals who are young, elderly, or ill.
While summary measures of motion can be easily derived from the
realignment parameters of functional time series, motion cannot be easily
estimated for most existing structural imaging data. A variety of motion-
tracking and -correction systems have been developed (Zaitsev et al.,
2015). However, such technologies have not been used for the vast ma-
jority of already-collected imaging data, which represents a huge societal
investment. Due to the absence of a known ground truth, one of the first
challenges for any study attempting to estimate image-derived measures
of data quality for structural images is to create manual ratings, which are
necessary to validate subsequent quantitative models. This problem is
quite analogous to studies of psychiatric or neurologic illness, where
several clinicians evaluate information from a patient and arrive at
consensus diagnosis.

With limited training utilities available, we pursued an approach
analogous to established procedures for training on clinical interviews
and rating scales (Forbes et al., 2010; Kaufman et al., 1997). A panel of
experts initially created a small set of anchors. Notably, while we origi-
nally piloted a rating system with 5 levels similar to that used in one
recent study (Pardoe et al., 2016), we found that even highly trained
experts could not reach a high level of concordance across 5 levels.
Accordingly, we limited the quality rating to three levels, akin to previ-
ous efforts (Reuter et al., 2015; Savalia et al., 2017). Using these anchors,
ble images that were not excluded due to gross artifact, cortical thickness was significantly
sociated with thicker cortex over much of the brain, but was conversely associated with
atasets. Image displays z-scores from a mass-univariate linear regression, where regional
cluded age, age squared, and sex. All results corrected for multiple comparisons using the



Fig. 8. Data quality significantly mediates observed associations between cortical thicknes and age in youth. Having found that data quality is associated with both age and
cortical thickness, we evaluated whether data quality might systematically bias inference regarding brain development. To do this, a mediation analysis was performed for each cortical
region (A), where we evaluated if the Euler number mediated the apparent relationship between age and cortical thickness. At each region, Sobel z-scores were calculated as the test
statistic for the mediation analysis. A positive Sobel's value indicates that when controlling for data quality an increased effect of age was revealed; a negative Sobel's value indicates that
when controlling for data quality a diminished association with age was present (B). This procedure was applied to both the training (C) and internal test set (D) from the PNC, which
revealed consistent mediation effects in both samples. Data quality significantly mediated the relationship between age and cortical thickness in a bidirectional, regionally heterogeneous
manner. After controlling for data quality, the apparent age effect was increased in many regions (regions in warm colors), where higher data quality was associated with thicker cortex (see
Fig. 7). However, in a subset of regions including the occipital and posterior cingulate cortex, controlling for data quality resulted in a diminished association with age (cool colors).
Multiple comparisons were accounted for using FDR (q< 0.05).
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a larger training set of 100 images was then rated by two faculty experts.
This set of 100 images was then used to train three experienced staff
members to >85% accuracy. After this degree of reliability was estab-
lished, the full set of images was evaluated. Following such training,
concordance remained relatively good in both the training and testing
samples. The pairwise correlation between raters was even higher,
reflecting that when raters were not concordant it was usually due to a
small but significant between-individual rater bias.
The Euler number aligns with manual ratings and can identify unusable
images

Having established a reliable set of manual ratings, we next derived
quantitative measures of data quality using summary statistics from the
structural image alone. Most of the measures we evaluated were pro-
duced using the Quality Assurance Pipeline (QAP) (Shehzad et al., 2015)
included in the Configurable Pipeline for Analysis of Connectomes
(C-PAC) (Sikka et al., 2013). In addition to this suite of measures, we also
evaluated the Euler number, a measure of topological complexity of the
cortical surface as reconstructed by FreeSurfer (Fischl, 2012). Using these
measures, we examined the correspondence with the average quality
rating across our three raters. Notably, the Euler number showed the
highest correlation with the manual ratings across all three samples,
suggesting it is a robust, dimensional measure of data quality.

In addition to being correlated with manual ratings, we also found
that the Euler number was effective in identifying images that were so
corrupted by artifact as to be unusable. This is a common step in sample
construction in any imaging study. Notably, the Euler number had
excellent performance across all three samples, with an AUC of
0.98–0.99. While AUC provides a good description of the overall pre-
dictive performance across all thresholds, a more stringent test of
generalizability is whether a specific classification threshold from a
model trained on one dataset can be applied to a different one. We found
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that a classification threshold which had excellent performance in the
training data also performed quite well on the independent test set from
the same study and scanner.

However, when this specific threshold was applied to an external test
set, classification accuracy was substantially lower despite a near-perfect
AUC (0.99). This reflects the fact that the specific classification threshold
criteria from the training dataset of adolescents was not optimal for an
adult sample acquired on a different scanner, and resulted in a very high
sensitivity but lower-than-optimal specificity. However, when the
threshold criteria were tailored to each dataset, performance was uni-
formly high. This suggests that the Euler number may be an effective
measure of data quality across samples and scanners, but that the specific
value used for flagging volumes for exclusion may need to be specified
individually at each scanning site.
Proxy measures of structural data quality from functional scans have
important limits

One recently proposed approach is to use motion estimated from a
functional time series acquired within the same session as a proxy of
structural image quality. Several prior reports have shown that this is a
fruitful approach (Alexander-Bloch et al., 2016; Pardoe et al., 2016;
Savalia et al., 2017), demonstrating associations between this proxy
measure of data quality and cortical thickness. One clear limitation of this
approach is that it requires a functional scan to be acquired in the same
scanning session. Furthermore, even when a functional scan is scheduled
to be part of the imaging session, such data may be missing due to
attrition. We demonstrated that motion increases over the course of the
scanning session, and that participants with low-quality T1 volumes are
more likely to be missing subsequent functional scans. Furthermore, our
results show that frame displacement from functional scans are less able
to identify unusable scans than the Euler number, which is calculated
from the T1 volume itself.
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Apparant cortical thickness in different brain regions is differentially
impacted by data quality

Previous work has shown that cortical thickness is systematically
biased by in-scanner motion, whether quantified by manual rating
(Pardoe et al., 2016; Savalia et al., 2017), motion estimated from func-
tional sequences acquired in the same scanning session (Alexander-Bloch
et al., 2016; Pardoe et al., 2016; Savalia et al., 2017), or volumetric
navigators embedded in the T1 sequence (Reuter et al., 2015). Here, we
demonstrate that an index of image quality derived directly from the
structural image itself shows a similar relationship. Importantly, the as-
sociation between data quality and cortical thickness had notable
regional heterogeneity. In somatomotor, temporal, parietal, and many
frontal regions, higher data quality was associatedwith greater thickness.
However, in other regions including the visual cortex and posterior
cingulate, higher data quality was associated with thinner estimated
cortical thickness. These results are strikingly convergent with prior re-
ports using other indices of data quality, which have demonstrated that
while in general higher data quality is associated with thicker cortex,
specific regions show the opposite effect (Alexander-Bloch et al., 2016;
Pardoe et al., 2016; Reuter et al., 2015).

Data quality biases estimates of structural brain development in youth

Accurate measurement of cortical thickness is critical to under-
standing typical and atypical trajectories of the developing brain. The
extant literature indicates robust age-related cortical thinning in
adolescence (Gennatas et al., 2017; Gogtay et al., 2004; Sotiras et al.,
2017; Sowell et al., 2001, 2003, 2004; Tamnes et al., 2010; Vandekar
et al., 2015). Moreover, there are regional-specific patterns of cortical
maturation throughout development, with delayed maturation of higher-
order association cortex (Giedd et al., 1999; Giedd, 2004; Gogtay et al.,
2004; Shaw et al., 2008; Sowell et al., 2004; Tamnes et al., 2010). While
most of these studies use validated methods to reduce in-scanner head
motion during acquisition, few if any systematically evaluated or
controlled for data quality. Importantly, several recent reports described
significant relationships between age and in-scanner head motion in a
variety of MRI protocols (Power et al., 2012; Roalf et al., 2016; Sat-
terthwaite et al., 2016).

To determine if previously reported developmental trends are resil-
ient to the impact of data quality, we performed region-wise mediation
analyses. Notably, associations between cortical thickness and age were
significantly mediated by data quality. This bias introduced by data
quality was bidirectional and regionally heterogeneous. Several regions
in frontal, temporal, parietal cortices showed more prominent develop-
mental effects once T1 data quality was considered, suggesting that noise
associated with data quality may partially mask associations with age. In
contrast, regions such as the posterior cingulate, precuneus, and occipital
cortex showed less prominent associations with age after controlling for
data quality. These results emphasize that accurate delineation of cortical
development is predicated upon data quality, which can both obscure
important developmental effects in some regions and inflate effects in
others. Notably, because data quality is likely to be collinear with other
subject-level variables including cognitive performance (Siegel et al.,
2017), symptom burden, and group status (Yendiki et al., 2014), this
effect has the potential to similarly confound a wide variety of studies of
brain structure.

Limitations

Several important limitations of the current study should be noted. As
discussed above, the Euler number provided an accurate image-based
index of data quality across three datasets from two different scanners.
However, the best exact classification threshold for accurate identifica-
tion of unusable data did vary by scanner. Thus, one limitation of the
current approach is that it is unlikely that a single Euler number exclusion
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threshold will apply to all studies. Second, in contrast to the measures
provided by QAP, calculating the Euler number at present requires
cortical surface reconstruction with FreeSurfer. This process is both time
and computationally intensive, requiring 12–24 h. This may limit the
deployment of this index in certain settings. Moving forward, further
investigation of other, simpler, registration-based methods may reveal
that much of the same information can be gleaned from processes that are
much less computationally demanding. However, given the widespread
popularity of the FreeSurfer platform, it is also quite likely that many
investigators have already calculated the Euler number for much of their
data, allowing for immediate use in ongoing studies. Third, it is unknown
at present how the test-retest reliability of automated measures of data
quality (such as the Euler number) compare to manual ratings (Zuo and
Xing, 2014). However, in contrast to manual ratings, automated mea-
sures are 100% reproducible for a single image, and thus may also be
more stable over time. Fourth, our quantitative quality metrics were
selected according to their agreement with manual ratings. However, it
should be acknowledged that manual ratings are not “ground truth”
regarding image quality, and thus may be limited in their ability to
inform and select quantitative quality measures. Fifth, due to our focus
on cortical thickness, we did not evaluate the impact of data quality on
sub-cortical or cerebellar regions. Sixth, it should also be noted that our
use of the relatively coarse parcellation provided by the commonly-used
Desikan-Killiany atlas precludes mapping the impact of data quality onto
functional sub-systems (Gordon et al., 2016; Yeo et al., 2011). Finally,
other measures of reconstruction quality beyond the Euler number are
available, and were not evaluated here (Chalavi et al., 2012; Lee et al.,
2006).

Conclusions

In this paper, we demonstrate that data quality can be estimated
directly from structural images that lack volumetric navigators. Such
image-based indices of data quality such as the Euler number can be used
to exclude unusable images in a reproducible fashion. Furthermore, these
continuous measures of image quality have the potential to be used as
covariates in group-level analyses of structural imaging data. The ability
to derive ameasure of data quality directly from the structural imagemay
obviate the need for use of proxy measures from functional sequences.

More broadly, the present data emphasize the degree to which data
quality should be appreciated as an important confound in structural
imaging studies. Investigators are encouraged to report measures of data
quality for all structural imaging studies, especially those that evaluate
individual or group differences. This is particularly relevant for studies
where data quality is likely to be systematically related to the primary
subject-level variable of interest, such as age, cognitive performance,
clinical group status, or disease severity. We provide one such example,
demonstrating that data quality can systematically bias associations be-
tween cortical thickness and age in youth. While it is now common
practice to report summary measures of motion and image quality for
fMRI research, it is less common for studies using T1-weighted imaging.
The present results underscore a need for transparent reporting of such
data. We urge investigators to report associations between data quality
and both subject level variables of interest (e.g., age, group) as well as the
primary imaging measure evaluated. Moving forward, quantitative esti-
mates of motion during the T1 scan provided by motion-tracking and
–correction technologies may obviate the need for post-hoc calculation of
quality indices. However, we anticipate that the strategy outlined here
may prove to be useful for the massive amount of structural imaging data
that has already been collected at great effort and cost.
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